Privacy Enhancing Technologies FS2025 Exercise Sheet 3 (version 1.1)

Florian Tramèr

Problem 1: Conceptual Questions. For each of the following statements, say whether it is TRUE or FALSE. Write at most one sentence to justify your answer.

- (a) If an interactive proof system has soundness error greater than $\frac{1}{3}$, then it cannot be a proof of knowledge with knowledge error less than $\frac{1}{3}$.
- (b) In the standard model (without a random oracle), we can build NIZKs for NP languages.
- (c) The polynomial $f(X) = 2X^2 + 4X$ has at most two roots in \mathbb{Z}_6 .
- (d) The Fiat-Shamir transform applied to a Sigma protocol yields a NIZK with statistical zero-knowledge.

Problem 2: More on Schnorr. Recall Schnorr's identification protocol from the previous homework:

Schnorr's Identification Protocol		
$P(x, h = g^x)$	$V(h=g^x)$	
$\begin{vmatrix} r \leftarrow^{\$} \mathbb{Z}_q \\ u \leftarrow g^r \end{vmatrix}$		
$u \leftarrow g^r$		
	$\stackrel{\mathcal{U}}{-\!\!\!\!-\!\!\!\!-\!\!\!\!-}$	
		$c \leftarrow^{\$} \mathbb{Z}_q$
	<i>C</i>	
$z \leftarrow r + cx$		
	\longrightarrow Z	
		$g^z \stackrel{?}{=} u \cdot h^c$

- (a) Build a NIZK from this protocol in the random oracle model. What is the proof π ?
- (b) Write down the verifier algorithm $V(\pi, h)$ for the NIZK.
- (c) What is the soundness error of this NIZK? Assume that the prover makes at most *Q* queries to the random oracle.
- (d) Suppose a verifier V was convinced by a NIZK proof for some statement x. Can they then go on to convince another verifier V' of the same statement x? What about if V was convinced by an interactive ZK proof for the same statement x?

Problem 3: Understanding Fiat-Shamir. Let Σ be a Sigma protocol.

- (a) Show that if Σ has soundness error 1/2, then applying the Fiat-Shamir transform *directly* to Σ yields a non-interactive zero-knowledge proof (NIZK) that is unsound. In particular, demonstrate an efficient attack that breaks the soundness of this NIZK.
- (b) Use Σ to construct a Sigma protocol Σ' that has negligible soundness error, and prove that its soundness error is negligible. Then explain how to apply the Fiat-Shamir transform to this protocol.

Problem 4: SNARGs in the Random Oracle Model. In this problem, we will show how to leverage probabilistically-checkable proofs (PCPs) to construct a succinct non-interactive argument (SNARG) in the random oracle model. We will rely on the following adaptation of the famous PCP theorem:

Theorem 1 (PCP). Let *L* be an NP language. There exists two efficient algorithms $(\mathcal{P}, \mathcal{V})$ defined as follows:

- The prover algorithm \mathcal{P} is a deterministic algorithm that takes as input a statement $x \in \{0,1\}^n$, a witness $w \in \{0,1\}^h$ and outputs a bitstring $\pi \in \{0,1\}^m$, where h, m = poly(n). We refer to π as the proof string.
- The verifier algorithm \mathcal{V}^{π} is a *randomized* algorithm that takes as input a statement $x \in \{0,1\}^n$ and has oracle access to a proof string $\pi \in \{0,1\}^m$. The verifier reads O(1) bits of π . The verifier chooses the bits it reads *nonadaptively* (i.e., they can depend on the statement x, but *not* on the values of any bit in π).

Moreover, (P, V) satisfy the following properties:

• Completeness: For all $x \in L$, if w is a valid witness for x, then

$$\Pr[\mathcal{V}^{\pi}(x) = 1 \colon \pi \leftarrow \mathcal{P}(x, w)] = 1.$$

• **Soundness:** If $x \notin L$, then for all $\pi \in \{0,1\}^m$,

$$\Pr[\mathcal{V}^{\pi}(x) = 1] \le 1/2.$$

Recall that in homework 1, we constructed a computationally-binding vector commitment scheme with the following syntax:

- Commit(x) $\rightarrow c$: The commitment algorithm takes a message $x \in \{0,1\}^n$ and outputs a succinct commitment $c \in \{0,1\}^{\lambda}$.
- $\operatorname{Open}(c, i, x_i) \to \sigma$: The open algorithm takes a bit $x_i \in \{0, 1\}$, a commitment $c \in \{0, 1\}^{\lambda}$, and an index $i \in [n]$, and outputs a proof σ of length $O(\lambda \cdot \log n)$.
- Verify $(c, i, x_i, \sigma) \to \{0, 1\}$: The verification algorithm takes a commitment $c \in \{0, 1\}^{\lambda}$, an index $i \in [n]$, a value $x_i \in \{0, 1\}$, and a proof σ , and outputs a bit.
- (a) Let L be an NP language (with statements of length m). Show how to construct a 3-round succinct argument system for L using your commitment scheme. Specifically, your argument system should satisfy perfect completeness, have soundness error $negl(\lambda)$ against computationally-bounded provers, and the total communication complexity between the prover and the verifier should be $poly(\lambda, log m)$. In particular, the communication complexity scales polylogarithmically with the length of the NP statement. [Hint:

Use the PCP theorem.]

(b) Explain briefly how to convert your succinct argument from Part (a) into a SNARG in the random oracle model.