
Privacy Enhancing Technologies
Lecture 6 : ORAM

Oblivious RAM see
Moodle

↑
· PIR

Z close to production· ORAM still very interesting
research developments

ORAM : privately read I write to
-

some database

Examples

PrvaleDropbox B
opbox

Hardware enclaves

·
EIntel

↳ encrypted

if (secret) :
C
encrypted

read men[O]
else
read new[17

encrypted

D

Delining ORAM Get(b)
RAM
word 1

Program client--
- L Word
-

Read(c)
Write (a,tatal

state
- !-

tatal) Set(b
,
rall-

word u

Correctness : The program behaves
correctly (as if it was
directly accessing RAM)

Privacy : the access patterns to the
RAM leak nothing about
the program'sreadSwrites

Def : · An operation opt Eread() , 3- write()

· Access Lop) : set of RAM accesses
made for op

Security/Privacy read(o)
let O = Sopa

, ope , ... ope?

O' = Eopt
,
ope , ...,op

write 17
,
"hello

&Access(ope) , Access (opk]3 I

& Access (opi)
,

Access(opi)3

"Trivial"
,
or naive solutions (PAM)

u words

(- local storage :M
- access orehead per op: 0

↳ put all the RAM in the client storage
= local storage : O(X) bits +&(1) words(-overhead : 1 RAM accesses per op.

Enc(datao
-read llsta 3 Ena (tataty
-

:
- read all the
RAM one-by-one
-

⑦ re-encrypt each
Enc (dataN)

word

- and re-writ to
the RAM

what we can do :
-

- At local storage /for constant 570)
- ollogn) accesses per op.

↑
E

PIR US ORAM

Private reads from Private reads & writes
Eblic D B to privat DB/RAM-

· DB is public &static · TB is private
and changes W.
every op

· Manydients) I server · I client Isave
· dient is statless · client must hare

-
-stat

· You need PK crypto · Can be built

in single-server setting from just ow?

Amn construction

* local storage : OCX bits
to() words

* overhead per op : O(m)
lamortized)

Oram client RAin

"C
~ SecretI: [n]en]->
-

"stash -> T se
-

-

↓ ! :
:secret it can

be implemented TH(a)
-

with just OWEs

- Read(i)
,
Writeli
,data) => read IT(i)

& Writeit (i)
- stone listata in local stash

- read/write something that is already
in the stash :

- do the op on the stash
- do a random read/verwrite

on 2AM

- this works until your stash
is full .
↳ say you evict (i) from
stash

↳ next time you have to
access (i) you leak to
the RAM that you're
re-accessing the same memory

- When the stash is full ,
we re-shuttle the entrie
RAM *

=> How toto this with

little overhead ?

Oblivious sorting

How to sorttata with uniform
access patterns

Bdexample : Merge sort

Inefficient example : Bubble sort

ei 22 es en ... en
- +

O(uz) oblivious sort

Ideal : oblivious O(nlogn) sort
-

Practical : Batcher sort 0(nlogu)
oblivious

Theprotocol
init : client inits a stash of in words
-

· RAM is init . to Enclos

while (true) :

· client sample a permutationI

· client shuffles the RAM
-according to 1)
tash↳ empty thes

· process In ops :

- if addr is in stash : do a
ra-don RAM read and store

- thowise
,
readaddr to stash

- it write , do it on the stash

Per in ops, overhead is :

- once : Olulogu)
- In tires : 1

=> Amortized overhead per up.
is Elfl
* ignoring log (n) lactors

Free-based ORAMs

↳ O(polylog (u)) overhead

↳ Here : "Simple ORAMI

Ollogn)

How this works

1) build a "bad" ORAM
with stash E and

O(log u) overhead

2) Recurse to Stone the stash
- 1in another ORM

3) Repeat log - times
- constant stask
- overhead Ollogu) · Ollogn)

building a BAD OR AM

Client
"position map"

1 = (u/2·# addr/addr+1

b=(/

17 Egypos= of
-

i leaves

Invariant : The data at address
-

a is somewhere on the pah
from the rood to the leaf node
indicated at position (a)
in the position map

How this works ?

Read (addr) :
- look up pos at element (ar)
in the position map

- read log (n) log(n) elements
of RAM from roof to leaf pos

↳ [addr : val , addres : ral']
- pick a new randon leat post
and update position map (addry-post

- re-encrypt laddr
,ral) (addr +1 ,val')

and insert this into root node

- if Overflow : walk town
I

the path from root to pos
and "flush" all elements
down the tree

↳ if this overflows , about

