
Privacy Enhancing Technologies
Lecture 5 – Private Information Retrieval

Florian Tramèr

AGENDA

1. Recap

2. PIR

3. 2-server PIR

4. Single-server PIR

5. Saving server computation

1 Recap so far

We started off this class by building towards a fully generic secure multi-party protocol.
Such protocols can be made practical for some functionalities (and a few deployments exist).
But we then also realized that there are some properties (especially forms of succinctness)
that are highly desirable in many applications and not achieved by generic protocols.

In the last lecture, we saw one example of a succinct primitive that can be made imminently
practical: Succinct Zero-knowledge proofs. In the following two lectures, we will cover
other types of primitives where a form of succinctness is desired—PIR and ORAM. Existing
implementations of these primitives range from “near-practical” (i.e., prototypes exist and
might get deployed if we can make them a bit more efficient), to “research products” (i.e.,
the protocol can be implemented in principle but the overhead is too large).

Here’s a good time to note that generally when deploying privacy-preserving technology,
your competition is a non-private primitive that has been optimized to death for speed. That
is, in many situations, privacy has been sacrificed over time to make way for utility. Winning
privacy back without sacrificing (too much) speed is hard.

2 Private Information Retrieval (PIR)

We’ll now talk about another amazing result in cryptography which, similarly to zero-
knowledge, may seem impossible at first glance.

One of my friends—Henry Corrigan-Gibbs—likes to refer to PIR as an “almost-perfect re-
search idea”, in reference to Dan Spielman’s desiderata for perfect research:

1. It has a beautiful theory.

2. It works in practice.

3. It solves a problem people care about.

It’s rare to have ideas that meet all three criteria. Many of the crypto things we cover in
this class hit 2.5/3, missing out (for now) on the practical aspect (as we’ll see, PIR falls in

1

this category). Other things we’ll cover (e.g., machine learning, differential privacy) maybe
don’t quite hit all three yet either. If you’re going to do research later on, it’s nice to try and
find problems that hit all three (to some degree).

The goal of Private Information Retrieval is as simple as it is ambitious: let’s build a private
Google:

Client Server

query

response

This general search-response paradigm appears in many applications on the Internet, e.g.,
search engines, DNS lookups, WebMD queries, searching the news, or social media, etc.

In all these scenarios, the client’s query can leak sensitive information (their search history,
medical symptoms, where they live, their political views, etc.)

Today, the server learns all this information from the client’s query. And of course, they’ll
make use of this information to somehow make more money, e.g, via targeted advertisement
or by selling it to third-parties...

This brings us to the fundamental question that PIR addresses:

Can you query a database without leaking any information about the client’s query?

Trivial PIR. There is a trivial answer to the above question (note that we do not ask for
privacy for the server): the client could just download the entire database from the server and
do the search locally.

This is of course entirely impractical for most applications. So what’s missing to make PIR
interesting is a notion of succinctness.

Sublinear database search. So let’s ask for something stronger. The client should be able
to query the database without leaking their query, and with communication complexity that
scales sub-linearly with the size of the database.

Now this sounds a lot less trivial! Unfortunately, unconditionally this is impossible... [CKGS98].

But when has that stopped anyone (especially in cryptography)? We’ll just have to make
some assumptions:

1. We can achieve PIR by assuming that two or more non-colluding servers host copies of
the database.

2. We assume public-key cryptography exists.

We’ll see an example of each in this lecture.

3 2-Server PIR

Before we formalize PIR, let’s see what a two (or more) server PIR protocol looks like.

2

x⃗ x⃗

Client

Server 1 Server 2

=

x1
x2
...

xn

 ∈ Zn
2 =

x1
x2
...

xn

 ∈ Zn
2

q0

a0

q1

a1

i ∈ [n] xi ∈ Z2

The security we aim for here is against non-colluding servers. That is, even if all servers
are malicious, as long as they don’t share information with each other, the protocol is se-
cure.

Here’s how we formally define PIR in this setting:

Definition 1 (2-Server PIR). A 2-Server PIR protocol consists of three algorithms:

• q0, q1 ← Query(i)

• ab ← Answer(x⃗, qb)

• xi ← Reconstruct(a0, a1)

The scheme should satisfy the following properties:

• Correctness: ∀n ∈N, i ∈ [n], x⃗ ∈ Zn
2 :

Pr

Reconstruct(a0, a1) = xi :
q0, q1 ← Query(i)

a0 ← Answer(x⃗, q0)
a1 ← Answer(x⃗, q1)

 = 1 .

• Security: ∀n ∈N, i, i′ ∈ [n], β ∈ {0, 1}:{
qβ : q0, q1 ← Query(i)

} c≈
{

qβ : q0, q1 ← Query(i′)
}

• Sublinear communication: ∀n ∈N, i ∈ [n], x⃗ ∈ Zn
2 :

|Query(i)|+ |Answer(x⃗, q0)|+ |Answer(x⃗, q1)| = o(n) .

3.1 Building Intuition: Hiding the Query Index with Secret Sharing

Let’s start with a strawman scheme to get some intuition. This scheme will provide us with
privacy, but won’t save us (much) in terms of communication.

Suppose the client wants to know the i-th bit of the database x⃗. This can be represented by

3

the computation:
x⃗ · ei = x⃗ · [0, 0, . . . , 0︸ ︷︷ ︸

i−1

, 1, 0, . . . , 0︸ ︷︷ ︸
n−i

]

Now, let the client produce an additive secret sharing of ei = q0 ⊕ q1, where q0 ←$ Zn
2 . The

client can send q0 to the first server, and q1 to the second. This leaks no information about
i to the servers. Both server can compute x⃗ · q0 and x⃗ · q1 locally and send the result to the
client. The client can then reconstruct x⃗ · ei by XORing the two results.

What have we gained? Recall that in the trivial PIR scheme, the client has to download the
entire database of n bits. Here, the client has to upload 2n bits, but only download 2 bits. So
we’ve pushed all the download cost into an upload cost. That seems unhelpful.

Actually, this scheme is (somewhat) useful if the database were to store records of more
than 1 bit each, e.g., if each row is a 100-bit vector. Then, the trivial PIR would require
downloading 100n bits, while this scheme requires uploading 2n bits and downloading 200
bits. Let’s see how we can improve upon this.

3.2 Load-balancing to Achieve O(
√

n) Communication.

We’ll now build on this idea to get a very simple 2-server PIR protocol with O(
√

n) com-
munication and information-theoretic security (under the non-collusion assumption). This
scheme is due to [CKGS98].

The idea is that we’ll take our database of n bits and turn it into a smaller database with
more bits per row! Specifically, we’ll view the database as a matrix X of

√
n×
√

n bits. If the
client wants the element at position (i, j), they’ll do a PIR protocol to reconstruct the entire
j-th column, and then use the i-th bit of the reconstructed column as the answer. Using our
previous strawman scheme, this takes O(

√
n) communication.

Query((i, j)) : q0 ←$ Z
√

n
2

q1 = q0 ⊕ ej

Answer(X, qb) : ab ← X · qb ∈ Z
√

n
2

Reconstruct(a0, a1) : xi ← (a0 ⊕ a1)i

X ∈ Z
√

n×
√

n
2

· q0 = a0 X ∈ Z
√

n×
√

n
2

· q1 = a1

q0

a0 q1 = q0 ⊕ ej a1

(i, j) ∈ [
√

n]× [
√

n] Xij = (a0 ⊕ a1)i

4

Analysis.

• Correctness:

(a0 ⊕ a1)i = (X · q0 ⊕ X · q1)i

= (X · q0 ⊕ X · (q0 ⊕ ej))i

= (X · q0 ⊕ X · q0 ⊕ X · ej)i

= (X · ej)i = Xij .

• Security: q0 is uniformly random in Z
√

n
2 , and so is q1 (this is an additive secret sharing).

• Communication:

– upload: |q0|+ |q1| = 2
√

n bits

– download: |a0|+ |a1| = 2
√

n bits

– total: O(
√

n) bits

3.3 Modern Two-server PIR: Distributed Point Functions

Let’s go back for a minute to our strawman scheme. The main idea is to take a “basis vector”
ei and to “encrypt” it with a one-time pad. But the information we want to convey to the
server is only log n bits, and so representing the index using n bits seems wasteful.

It turns out that, under very mild cryptographic assumptions, we can do better! Instead of
looking at the client’s query as a basis vector, we’ll look at it as a point function, i.e., a function
that evaluates to 1 at a single point and 0 elsewhere:

δi : [n]→ {0, 1}

δi(x) =

{
1 if x = i
0 otherwise

A distributed point function (DPF) [GI14] is a succinct additive secret-sharing of a point func-
tion, i.e., a way for two servers to compute values a(x) and b(x) such that a(x) + b(x) =
δi(x).

Definition 2 (Distributed Point Function [GI14]). A distributed point function (for two
parties) is a pair of poly-time algorithms (Gen, Eval) with the following syntax:

• Gen(i) where i ∈ [n] outputs a pair of keys (k0, k1).

• Eval(k, j) where j ∈ [n] outputs y′ ∈ {0, 1}.

The DPF is secure if it satisfies the following property:

• Correctness: For all i, j ∈ [n]:

Pr [Eval(k0, i)⊕ Eval(k1, j) = δi(j) : k0, k1 = Gen(i)] = 1 .

• Secrecy: For β ∈ {0, 1} there exists a simulator Simβ such that for all i ∈ [n]:

Simβ()
c≈ {kβ : (k0, k1)← Gen(i)}

5

It’s not hard to see that a DPF immediately implies a two-server PIR protocol: to retrieve
the i-th bit, the client generates the keys (k0, k1)← Gen(i) and sends one to each server. The
servers compute Eval(kb, j) · Xj for each j and send the sum of the results to the client. The
client sums up the server’s results to get:(

∑
j
Eval(k0, j) · Xj

)
⊕
(

∑
j
Eval(k1, j) · Xj

)
= ∑

j
δi(j) · Xj = X · ei = Xi .

Now for the cool bit: for two servers, we can implement DPFs with keys of size O(log n)
bits! Moreover, these constructions (while not super simple) only require one-way functions
(e.g., AES) and are extremely fast in practice. This thus gives us a very efficient two-server
PIR protocol with O(log n) bits of communication.

DPFs are a very useful building block in a bunch of recent practical PETS, such as protocols
for computing private statistics [CGB17] which we’ll cover in a future lecture.

4 Single-server PIR

The previous schemes worked because we could “encrypt” the client’s query by additively
secret-sharing it between the two servers. If we have a single server, we’ll now just use
regular encryption! But we’ll need an encryption scheme with a special property: linearly
homomorphic encryption.

E(k, m1) + E(k, m2) = E(k, m1 + m2)

Remember that we saw an example of a homomorphic commitment scheme in the first lec-
ture. Constructing linearly-homomorphic encryption relies on similar ideas. Such schemes
are quite common. We can build them from common assumptions, such as Diffie-Hellman,
quadratic residuosity, Learning with Errors, etc.

4.1 Back to Our Strawman Scheme

We can directly plug in a linearly-homomorphic encryption scheme into our strawman PIR
protocol, in place of the additive secret-sharing. That is, the client computes the query vec-
tor

q = E(k, ej) := [E(k, 0), . . . , E(k, 1), . . . , E(k, 0)] ,

where we just encrypt the basis vector component-wise. Then, the server can compute

x⃗ · q = x⃗ · E(k, ej) = E(k, 0) · x1 + · · ·+ E(k, 1) · xj + · · ·+ E(k, 0) · xn = E(k, xj)

and send the result to the client. The client can then decrypt the result to get xj.

4.2 Load Balancing

Let’s now apply load-balancing again. Our protocol now looks like this:

6

X

q = E(k, ej) := [E(k, 0), . . . , E(k, 1), . . . , E(k, 0)]

(i, j) ∈ [
√

n]× [
√

n]
a

a = X · q = X · E(k, ej)

= E(k, X · ej)

= E(k, Xj)

(Dec(k, a))i = Dec(k, E(k, Xj)i

= Xij
requires only

adding ciphertexts

The total communication is |q|+ |a| =
√

n +
√

n ciphertexts, or O(λ
√

n) bits.

4.3 Recursive PIR

4.3.1 Recursive PIR

4.1.1.1 Recursive PIR This is one of the coolest ideas to make single-server PIR more effi-
cient. Notice that in our

√
n scheme above, the client always receives

√
n elements from the

server, but they are only interested in one of them (i.e., the i-th one).

Essentially, what we’re doing here is a trivial PIR over
√

n elements, by downloading a
whole column of X. So why don’t we re-do PIR here too? Let’s see how to use this idea with
one level of recursion to get a O(n1/3) scheme.

We’re going to view our database as a matrix of n2/3 rows of n1/3 bits each.

X = []
n1/3

n2/3

The first layer of PIR selects one column of the database. This column contains n2/3 cipher-
texts. The server can now view these ciphertexts as another database matrix of dimension
n1/3 × n1/3. And then we do a second layer of PIR to select one column in this matrix.

q0 = E(k, ej), q1 = E(k, ei)

a1

n1/3

n1/3

n2/3
{[

X
]
·
[
q0
]
=
[

a0

]}
n2/3 ctxts

n1/3
{[

a0
]
·
[
q1
]
=
[
a1
]}

n1/3 ctxts

express as a matrix of ctxts

O(n1/3) ciphertexts

But now, we’re still sending back O(n1/3) ciphertexts even though the client just needs one.
So we could recurse again! But there’s a catch: we need to ensure that ciphertexts don’t
“blow up” in size. Indeed, note that

a0 = X · E(k, ej) = E(k, X · ej) = E(k, Xj)

and
a1 = a0 · E(k, ei) = E(k, a0 · ei) = E(k, E(k, . . .)) .

7

That is, the final ciphertexts in a1 are encryptions of other ciphertexts. If the encryption
scheme has high expansion (i.e., ciphertexts are much larger than plaintexts), then every layer
of recursion will blow up the size of the ciphertexts. We thus need a linearly homomorphic
encryption scheme that has low expansion (e.g., [DJ01]).

Q: Does this recursive PIR idea work for 2-server PIR? Why or why not?

5 State-of-the-art in PIR Communication Complexity

So what’s currently the best we can do in PIR?

• Two-server PIR

– Information theoretic: O
(

n
√

log log n/ log n
)
= no(1) [DG16]

– Computational: O(log n) [GI14, BGI15].

• Single-server PIR: O(polylog n) (from QR, DDH, LWE, ...) [CMS99]

6 Computational Complexity

So far, we have ignored the computational complexity of our PIR schemes. But this is where
the bottleneck tends to lie in practice today.

Most notably, in all the schemes we discussed, the server’s work is linear in the size of the
database. That is, for every query from the client, the server has to scan the entire database
and cannot make use of any efficient search data structure.

In some sense, this is inherent: if the server doesn’t read some bit xi in the database in
response to a query, then we learn that the query wasn’t for xi. There are a few ways to get
around this limitation, to aim to make PIR practical for real-world usage:

• Batching: If we have multiple queries to answer simultaneously, there are clever hash-
based schemes that partition a DB into multiple chunks so that we can answer all
queries in one go. These schemes end up answering q queries on a DB of size n with
server work O((λ log q)n) [IKOS04].

• Pre-processing the DB: The server could do the linear work upfront, to pre-compute
some data structure that would allow for faster responses later [BIM00]. This has been
a very active area of research in the past few years.

[CGK20] give a 2-server scheme with an offline linear-time pre-processing phase (in-
dependent of any queries), that later allows the server to answer online user queries
with sublinear communication and computation complexity O(

√
n · polylog n). A nice

property of this scheme is that the server still stores the database in its original form.

A beautiful recent work of Lin et al. [LMW23] (STOC’23 best paper) designs a single-
server PIR scheme where the server first encodes the database into some special data
structure in near-linear time, so that it can later answer clients’ online queries with
complexity only O(polylog n)! This is essentially the best we could hope for, so there’s
a lot of excitement that further empirical improvements to this (theoretical) work could
result in practical single-server PIR applications.

8

References

[BGI15] Elette Boyle, Niv Gilboa, and Yuval Ishai. Function secret sharing. In Annual in-
ternational conference on the theory and applications of cryptographic techniques, pages
337–367. Springer, 2015.

[BIM00] Amos Beimel, Yuval Ishai, and Tal Malkin. Reducing the servers computation
in private information retrieval: PIR with preprocessing. In Advances in Cryptol-
ogy—CRYPTO 2000: 20th Annual International Cryptology Conference Santa Barbara,
California, USA, August 20–24, 2000 Proceedings 20, pages 55–73. Springer, 2000.

[CGB17] Henry Corrigan-Gibbs and Dan Boneh. Prio: Private, robust, and scalable com-
putation of aggregate statistics. In 14th USENIX symposium on networked systems
design and implementation (NSDI 17), pages 259–282, 2017.

[CGK20] Henry Corrigan-Gibbs and Dmitry Kogan. Private information retrieval with
sublinear online time. In Advances in Cryptology–EUROCRYPT 2020: 39th Annual
International Conference on the Theory and Applications of Cryptographic Techniques,
Zagreb, Croatia, May 10–14, 2020, Proceedings, Part I 39, pages 44–75. Springer,
2020.

[CKGS98] Benny Chor, Eyal Kushilevitz, Oded Goldreich, and Madhu Sudan. Private in-
formation retrieval. Journal of the ACM (JACM), 45(6):965–981, 1998.

[CMS99] Christian Cachin, Silvio Micali, and Markus Stadler. Computationally private in-
formation retrieval with polylogarithmic communication. In Advances in Cryp-
tology—EUROCRYPT’99: International Conference on the Theory and Application
of Cryptographic Techniques Prague, Czech Republic, May 2–6, 1999 Proceedings 18,
pages 402–414. Springer, 1999.

[DG16] Zeev Dvir and Sivakanth Gopi. 2-server PIR with subpolynomial communica-
tion. Journal of the ACM (JACM), 63(4):1–15, 2016.

[DJ01] Ivan Damgård and Mads Jurik. A generalisation, a simplification and some ap-
plications of Paillier’s probabilistic public-key system. In Public Key Cryptogra-
phy: 4th International Workshop on Practice and Theory in Public Key Cryptosystems,
PKC 2001 Cheju Island, Korea, February 13–15, 2001 Proceedings 4, pages 119–136.
Springer, 2001.

[GI14] Niv Gilboa and Yuval Ishai. Distributed point functions and their applications. In
Advances in Cryptology–EUROCRYPT 2014: 33rd Annual International Conference on
the Theory and Applications of Cryptographic Techniques, Copenhagen, Denmark, May
11-15, 2014. Proceedings 33, pages 640–658. Springer, 2014.

[IKOS04] Yuval Ishai, Eyal Kushilevitz, Rafail Ostrovsky, and Amit Sahai. Batch codes
and their applications. In Proceedings of the thirty-sixth annual ACM symposium on
Theory of computing, pages 262–271, 2004.

[LMW23] Wei-Kai Lin, Ethan Mook, and Daniel Wichs. Doubly efficient private information
retrieval and fully homomorphic RAM computation from ring LWE. In Proceed-
ings of the 55th Annual ACM Symposium on Theory of Computing, pages 595–608,
2023.

9

	Recap so far
	Private Information Retrieval (PIR)
	2-Server PIR
	Building Intuition: Hiding the Query Index with Secret Sharing
	Load-balancing to Achieve O(n) Communication.
	Modern Two-server PIR: Distributed Point Functions

	Single-server PIR
	Back to Our Strawman Scheme
	Load Balancing
	Recursive PIR
	Recursive PIR

	State-of-the-art in PIR Communication Complexity
	Computational Complexity

