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These lecture notes are inspired by notes of Dan Boneh1, and Vitalik Buterin2.
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1 Recap on SNARGs

In the last lecture we introduced interactive proofs and zero-knowledge, and discussed a
number of applications. As wee saw, in many cases it is particularly nice to have proof
systems that are non-interactive and succinct. We call these SNARGs.

We saw a blueprint for SNARG constructions which first builds an information-theoretic
proof system where the prover and verifier interact in some constrained way, aided by a
special proof oracle. We saw one concrete example, the PCP theorem, that allows a verifier to
check the correctness of a proof while only reading a constant number of bits from it. You’ll
show how to build a SNARG from the PCP theorem in your homework. But no one uses
this approach in practice, because the PCP theorem is incredibly inefficient: even though the
PCP proof is polynomial-sized, existing constructions have huge blowup factors.

In this lecture, we will look at another type of information-theoretic proof system, Polyno-
mial IOPs, where the prover and verifier interact via polynomials. We’ll then present one
famous and recent Polynomial IOP (called PLONK [GWC19]) and discuss how to turn it
into a SNARG using polynomial commitments.

2 The Magic of Polynomials

The majority of modern SNARGs start from an information-theoretic protocol where the
prover and verifier interact by exchanging polynomials. But why polynomials?

Essentially, you can think of a polynomial as a succinct way to represent many different
equations. Looking forward, this will enable us to represent the computation of an entire
arithmetic circuit as just one big polynomial equation.

1https://cs251.stanford.edu/lectures/lecture15.pdf
2https://vitalik.eth.limo/general/2021/01/26/snarks.html
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Let’s work through a dummy example, due to (I think) Vitalik Buterin. Suppose I want to
convince you that the 100-th Fibonacci number is

354,224,848,179,261,915,075

Of course you could do this computation yourself (e.g., by using the closed-form expression
for the n-th Fibonacci number). But let’s assume you can’t (or don’t want to) do this.

To convince you, I create a polynomial ffib(X) over some (large) field Fp and claim that:

1. ffib(0) = ffib(1) = 1.

2. ffib(100) = 354,224,848,179,261,915,075.

3. ffib(x + 2) = ffib(x) + ffib(x + 1) for all x ∈ {0, 1, . . . , 98}.

You should convince yourself that this is equivalent to my original claim. Note that creating
the polynomial ffib requires a lot of work, but this is work done by the prover.

I put the polynomial ffib in a “box” that lets you evaluate it at any point (we will later replace
the box by a polynomial commitment scheme). So what does the verifier need to do?

Testing that ffib(0) = ffib(1) = 1 and that ffib(100) = 354,224,848,179,261,915,075 is easy.
You just ask the box for an evaluation of ffib at 0, 1, and 100.

ffib(X) := a0 + a1X + · · ·+ adXd

Verifier

Prover 0, 1, 100 ffib(0), ffib(1), ffib(100)

accept/reject

Testing the third property is a bit more complicated, and will require using some nice prop-
erties of polynomials.

Equality Test. Let’s first see how to prove that two polynomials f and g in the box are
equal. This is a very useful building block for proving more interesting things.

The prover puts both polynomials f and g in a box that the verifier can evaluate at any point.
A naive solution would be for the verifier to evaluate both polynomials at d + 1 points and
check if they are all equal. But if we allow for some small error, we can do a lot better! What
the verifier will do is simply to evaluate both polynomials at a single random point r ∈ F. If
f (r) = g(r), then the verifier accepts that the two polynomials are equal.

f (X), g(X)

Verifier

Prover r ←$ F f (r), g(r)

accept if f (r) = g(r)
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Why is this sound? This follows from the single most important fact about polynomials that
you should remember: they can’t have too many roots!

Any non-zero polynomial over F of degree d has at most d roots over F.

A fact so fundamental deserves a fundamental name: the fundamental theorem of algebra.

Suppose the prover cheats and f ̸= g. Then f (X)− g(X) is a non-zero polynomial of degree
at most d, and so it can have at most d roots over F. Then, the probability that the verifier
picks a “bad” r such that f (r) = g(r) is at most d

|F| . If we pick a large enough field F, then
this probability can be made negligibly small.

ZeroTest. Recall that in our running Fibonacci example, we want to show that ffib(x + 2) =
ffib(x) + ffib(x + 1) for all x ∈ {0, 1, . . . , 98}. This is not quite the same as an equality test,
since we only need to check the equality on a subset of points, rather than all points (i.e., for
x > 98 we don’t care if the equality holds or not). We can recast this problem as showing
that the polynomial ffib(X + 2)− ffib(X)− ffib(X + 1) is zero on the set {0, 1, . . . , 98}.

We will abstract this slightly as this problem will re-appear in PLONK. Suppose the prover
wants to convince the verifier that a polynomial f ∈ F[X]≤d is zero on all points in some set
Ω ⊆ F of size |Ω| = k ≤ d. We now use another useful fact. Let ZΩ(X) := ∏a∈Ω(X − a) be
the vanishing polynomial of Ω. Then,

f is zero on Ω if and only if f (X) is divisible by ZΩ(X).

As an example, let f (X) = X3 − 7X + 6 and Ω = {1, 2}. We have f (1) = f (2) = 0, so f is
zero on Ω. And indeed, we can write f (X) = (X− 1)(X− 2)︸ ︷︷ ︸

ZΩ(X)

·(X + 3).

So if f is indeed zero on Ω, then we can write f (X) = ZΩ(X) · q(X) for some quotient
polynomial q of degree less than d. If f is not zero on Ω, then no such polynomial q exists.
We can now set up our proof system in the “box” world:

f (X), q(X)

Verifier

Prover

compute q(X) = f (X)/ZΩ(X)

r ←$ F f (r), q(r)

accept if f (r) = q(r) · ZΩ(r)

To argue soundness, assume f is not zero on Ω. Then f (X)/ZΩ(X) is not a polynomial over
F, and so the prover has to send the box another polynomial q(X) of degree d. Now consider
the polynomial f (X)− q(X) · ZΩ(X). This polynomial is non-zero, and has degree at most
2d. So the probability that this polynomial vanishes at a random point r is at most 2d

|F| .

Putting it all together. We now have all the building blocks we need for our Poly-IOP for
proving the value of the 100-th Fibonacci number. Our final protocol looks like this:
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ffib(X), q(X)

Verifier

Prover

q(X) = ffib(X+2)− ffib(X)− ffib(X+1)
∏98

i=0(X−i)

0, 1, 100, r, r + 1, r + 2 ffib(0), ffib(1), ffib(100), ffib(r), ffib(r + 1), ffib(r + 2), q(r)

accept if ffib(0) = ffib(1) = 1
ffib(100) = 354, . . . , 075
ffib(r + 2)− ffib(r)− ffib(r + 1) = q(r) ·∏98

i=0(r− i)

There is one small issue with this protocol that we glossed over: the verifier has to compute
∏98

i=0(r− i). This is not a succinct computation (compared to calculating ffib(100) directly).
When we design the PLONK proof system later, we will show how to get around this by
either having this vanishing polynomial be pre-computed, or by having the vanishing poly-
nomial have some special structure that allows ZΩ(r) to be computed efficiently.

3 Polynomial Commitments

The protocols we defined so far were in this special “box” world where the prover can put
a bunch of polynomials in a locked box and the verifier can query them at random points.
This is more formally called a Polynomial IOP (or Poly-IOP) [CHM+20, BFS20].

To turn a Poly-IOPs into a SNARG, we just need a suitable commitment scheme for polyno-
mials: a Polynomial Commitment Scheme [KZG10]. This lets a prover provide a short commit-
ment to a polynomial f and provide short proofs that f (z) = y for arbitrary points z.

Definition 1 (Polynomial Commitment Scheme). A polynomial commitment scheme
for polynomials in a field F is a tuple of algorithms:

• Setup(d, λ) → pp, outputs public parameters pp given a degree bound d and a
security parameter λ.

• Commit(pp, f )→ c, outputs a commitment c to a polynomial f ∈ F[X]≤d.

• Open(pp, f , z)→ π, outputs a proof π for the evaluation y = f (z).

• Verify(pp, c, z, y, π) → {0, 1}, checks the proof π for the evaluation point (z, y)
with respect to the commitment c.

The scheme should satisfy the following properties:

Correctness. For all d ∈N, all polynomials f ∈ F[X]≤d and all points z ∈ F, we have:

Pr

Verify(pp, c, z, f (z), π) = 1 :
pp← Setup(d)

c← Commit(pp, f )
π ← Open(pp, f , z)

 = 1 .

Evaluation Binding. For all d ∈N and poly-time adversaries A we have:

Pr

 Verify(pp, c, z, y, π) = 1,
Verify(pp, c, z, y′, π′) = 1,

y ̸= y′
: pp← Setup(d)
(c, z, y, π, y′, π′)← A(pp)

 ≤ negl(λ) .

4



We won’t describe any concrete construction here, but you will familiarize yourself with one
in the homework.

From a Poly-IOP to a SNARG. So coming back to our simple Fibonacci example, our final
SNARG would have the prover send commitments to ffib(X) and q(X), and then provide
opening proofs for all the verifier’s queries.

VerifierProver

Commit( ffib), Commit(q)

r ←$ F

Open( ffib, 0), Open( ffib, 1), Open( ffib, 100)

Open( ffib, r), Open( ffib, r + 1), Open( ffib, r + 2), Open(q, r)

Since the verifier only makes one random query, we can turn the entire protocol non-interactive
using the Fiat-Shamir heuristic, by deriving the challenge r from a random oracle.

4 The PLONK IOP

We’ve seen a flavor of how to prove statements using polynomials. But for now we looked
at a very specific (and not very interesting) example of computing Fibonacci numbers.

We are now going to describe a popular Poly-IOP that applies to arbitrary arithmetic cir-
cuits: PLONK [GWC19]. When combined with a Polynomial Commitment Scheme and the
Fiat Shamir heuristic, the PLONK IOP becomes a SNARG (it is also easy to turn it zero-
knowledge, although we won’t describe this part). Depending on the choice of commit-
ment scheme, we get SNARGs with different properties (e.g., with or without the need for a
“trusted setup”, with post-quantum security or not, etc.)

Recall from the last lecture that we are interested in proving statements of the form C(x, w) =
0 where C is an arithmetic circuit, x ∈ Fm is a a public input (known to the verifier) and
w ∈ Fn is the prover’s witness. Our goal is to build a succinct non-interactive proof system
for such circuits. Specifically, the proof string should be of length O(λ, polylog (|C|)) and
the verifier should run in time O(λ, |x|, polylog (|C|)).

4.1 From Circuits to Polynomials

Circuit traces. Given an arithmetic circuit, we can represent its execution as a circuit trace
which represents the value of each wire in the circuit at each step.

x1

x2

w1

×

+

×

Gate 0

Gate 1

Gate 2

(x1 × x2)× (x2 + w1)

2

4

4

3

8

7
56 ⇒

Inputs: 2 4 3

Gate 0: 2 4 8
Gate 1: 4 3 7
Gate 2: 8 7 56

Left Right Out
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Representing circuit traces as polynomials. Let |C| be the total number of gates in the cir-
cuit C, and let |I| = |Ix|+ |Iw| be the number of inputs to C. Let d = 3|C|+ |I| be the polyno-
mial degree (in our example above, we have d = 12). Define a set Ω = {1, ω, ω2, . . . , ωd−1}
where ω ∈ F is a root of unity in F (i.e., ωd = 1).

The prover then interpolates a polynomial ftrace ∈ F[X]≤d that encodes all inputs and
wires:

1. ftrace encodes all inputs: ftrace(ω−j) = input #j for j = 1, . . . , |I|.

2. ftrace encodes all wires: For all l = 0, . . . , |C| − 1:

• ftrace(ω3l) = left input to gate #l

• ftrace(ω3l+1) = right input to gate #l

• ftrace(ω3l+2) = output of gate #l

In our example above, ftrace has degree 11:

Inputs: ftrace(ω−1) = 2 ftrace(ω−2) = 4 ftrace(ω−3) = 3
Gate 0: ftrace(ω0) = 2 ftrace(ω1) = 4 ftrace(ω2) = 8
Gate 1: ftrace(ω3) = 4 ftrace(ω4) = 3 ftrace(ω5) = 7
Gate 2: ftrace(ω6) = 8 ftrace(ω7) = 7 ftrace(ω8) = 56

4.2 Verifying The Circuit Trace

So now the prover puts the trace polynomial ftrace in a box and lets the verifier evaluate ftrace
on arbitrary points. What should the verifier check to ensure that the proof is correct?

1. The output of the last gate is 0

2. ftrace encodes the correct public inputs

3. Every gate is evaluated correctly

4. The wiring is implemented correctly

We won’t cover all of these in detail, but the idea is that the verifier will check all of these
properties by querying the polynomial on appropriate points.

(1) Checking the output. The verifier simply checks that ftrace(ω3|C|−1) = 0.

(2) Checking the inputs. The verifier builds a polynomial fin(X) ∈ F[X]≤|Ix| that encodes
the public inputs x to the circuit: for j = 1, . . . , |Ix|: fin(ω

−j) = xj.

The prover then proves to the verifier that ftrace(x) − fin(x) = 0, ∀x ∈ ΩI = {ω−j | j =
1, . . . , |Ix|}. This is an instance of the ZeroTest problem! So the prover puts ftrace and
ftrace − fin in the box. The verifier can first check that these oracles are consistent (i.e., they
correspond to the same trace ftrace) by querying both polynomials on a random point r, and
testing that the results differ by fin(r) (which the verifier can calculate locally). Then, we do
the ZeroTest IOP on ftrace − fin over ΩI .
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(3) Checking the evaluation. We need to check that the addition and multiplication gates
are actually evaluated correctly. That is, we need to check that ftrace(ω2) = ftrace(ω0) ×
ftrace(ω1), ftrace(ω5) = ftrace(ω3) + ftrace(ω4), etc.

The idea here is to build a selector polynomial fsel that encodes the type (× or +) of each gate.
Formally:

Define fsel(X) ∈ F[X]≤d such that ∀l = 0, . . . , |C| − 1 :

fsel(ω
3l) =

{
0 if gate l is a multiplication gate
1 if gate l is an addition gate

In our running example, we would have:

fsel(X)

Gate 0 (ω0): 2 4 8 0 (×)
Gate 1 (ω3): 4 3 7 1 (+)
Gate 2 (ω6): 8 7 56 0 (×)

Then, we want to check that:

∀x ∈ Ωgates := {ω0, ω3, ω6, ω9, ..., ω3(|C|−1)} :

fsel(x)× [ ftrace(x)︸ ︷︷ ︸
Left input

+ ftrace(ωx)︸ ︷︷ ︸
Right input

] + (1− fsel(x))× [ ftrace(x)︸ ︷︷ ︸
Left input

× ftrace(ωx)︸ ︷︷ ︸
Right input

] = ftrace(ω
2x)︸ ︷︷ ︸

Output

.

We can do this with a ZeroTest over Ωgates for the polynomial:

fgates(X) := fsel(X) · [ ftrace(X)+ ftrace(ωX)]+ (1− fsel(X)) · ftrace(X) · ftrace(ωX)− ftrace(ω
2X)

One important thing to note though, is that fsel has degree O(|C|) and so the verifier cannot
even build this polynomial if we want the proof to be succinct. The nice observation here
is that fsel only depends on the circuit C, and not on the specific instance x or witness w.
So if we are going to re-use the circuit C many times, we can do a one-time expensive pre-
processing step to compute fsel and commit to it. This commitment then becomes part of the
public parameters of the scheme.

(4) Checking the wiring. Note that the polynomial ftrace contains some redundancy. Specif-
ically, the inputs (which are encoded in the points ΩI) are also left or right inputs of some
gates. Then, the output of each gate (except the last) is also an input to another gate. The
verifier thus has to check these consistency constraints.

In our running example, this corresponds to checking:

• Inputs: ftrace(ω−1) = ftrace(ω0), ftrace(ω−2) = ftrace(ω1) = ftrace(ω3)

• Gate outputs: ftrace(ω2) = ftrace(ω6), ftrace(ω5) = ftrace(ω7)

We won’t describe the Poly-IOP that checks this property here. The idea is basically to prove
that ftrace(x) = ftrace( frot(x)), ∀x ∈ Ω where frot : Ω → Ω is a rotation polynomial that de-
pends only on the circuit’s wiring. This polynomial is also committed to in a preprocessing
phase.
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5 A PLONK SNARG

So what does our final SNARG look like, when we combine the PLONK IOP with a polyno-
mial commitment scheme?

(Universal) setup. We run the setup of the polynomial commitment scheme to get pp. This
setup is universal, in that it does not depend on the specific circuit C being used (as long as
we have a bound on the size of the circuits we may want to make proofs for).

Circuit-specific preprocessing. We compute the polynomials fsel and frot, commit to them,
and add the commitments to the public parameters. This preprocessing takes time O(|C|).

Proof. The prover runs the circuit C(x, w) on the public input x and witness w. Then:

1. The prover computes the trace polynomial ftrace and commits to it. The verifier queries
it at ω3|C|−1 to check the circuit is satisfied.

2. The prover and verifier compute the input polynomial fin. The prover commits to
ftrace − fin and to the quotient polynomial for the ZeroTest. The verifier queries these
polynomials on random points.

3. The prover computes the quotient polynomial of fgates(X) to perform a ZeroTest over
Ωgates. The verifier queries the committed polynomials ( fsel, ftrace and the quotient) to
do the ZeroTest.

4. The prover and the verifier do another Poly-IOP (not covered here) to check that ftrace
is consistent with the committed rotation polynomial frot (this ultimately also reduces
to a ZeroTest).

In this protocol, all the verifier’s queries are randomly sampled from F, and so we can apply
Fiat-Shamir to turn the whole thing non-interactive.
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