
Privacy Enhancing Technologies
Lecture 2 – Secure Multi-Party Computation

Florian Tramèr

AGENDA

1. Recap

2. Defining MPC

3. Computing on Secret Shared Data

4. Extensions

1 Recap on Commitments

In the previous lecture we saw an example of a very simple privacy functionality, where one
party can commit to a secret and later reveal it. We also saw a first example of computing on
secret data, with homomorphic commitments.

Today, we’re going to focus on a much more general form of privacy protocol, where multiple
(≥ 2) parties can compute an arbitrary function over their secret data.

2 Secure Multi-Party Computation

Today’s lecture will be devoted to one of the most fascinating result of modern cryptogra-
phy:

“Any function that can be computed securely with the help of a trusted third party, can
also be securely computed without.”

We’ll unpack what this statement means formally in the following section. But for now, let’s
just look at some examples.

Example application: Private Machine Learning. Suppose that your have different parties
that want to jointly train a machine learning model on their data. These could be different
hospitals that want to combine their local patient datasets to train a better model for pre-
dicting diseases. Or it could be all smartphone owners jointly training a powerful keyboard
prediction model on all of their text messages. In both of these cases, the parties want to
obtain a good model by combining everyone’s data, but they don’t want to reveal their data
to each other.

The “trivial” solution prescribed by cryptography is to have a trusted third party that col-
lects everyone’s data, trains the model, and then sends it back to the parties. But of course
this is not very satisfying, since it requires entrusting one party with everyone’s data. Se-
cure multi-party computation (MPC) basically allows us to run a protocol that “simulates”
the trusted third party, but without actually having to trust anyone!

1



A B

C D

Trusted Party.
or MPC!

medical records

ML classifier trained on users’ data

learns nothing
about other parties’

data

Other applications. Pretty much any cryptographic application you can think of can be
cast as a secure multi-party computation problem. Examples include:

• Secure messaging

• E-voting

• Private auctions

• . . .

So why don’t we use MPC for everything, everywhere, all at once? Well, its generality comes
at a cost: MPC is typically very inefficient compared to a non-private solution (e.g., the
overhead for training ML models is likely 100-1000×). And there are also specialized cryp-
tographic protocols that are much more efficient for specific applications (e.g., secure mes-
saging). But MPC has made enormous practical progress in the last few years, so it is likely
that we’ll see it used more and more in the future.

2.1 Defining MPC

There are n parties P1, . . . , Pn with inputs x1, . . . , xn that want to jointly compute a func-
tion

y← f (x1, . . . , xn) .

We can also generalize this to the case where the function generates multiple outputs y1, . . . , yn
for each party.

We assume an adversary who “corrupts” some number of parties and makes them collude
to break the security of the protocol.

The informal security goal is that the adversary should learn nothing more about the honest
parties’ inputs than it couldn’t also have learned if all parties were interacting with a trusted
third party.

2



Ideal World

Trusted party for f

P1 P2 . . . Pn

x1 y x2 y xn y

corrupted parties

≈
computational

or statistical

Real World

P1(x1)

P2(x2)

Pn(xn)

corrupted
parties

This is sometimes called the “real ideal paradigm” or “simulation paradigm”.

So what does an adversary learn in the “ideal” world?

• The inputs of the corrupted parties.

• The output y of the function f .

And that’s it! In the ideal world, anything else that the adversary learns must be computable
just from these two pieces of information. And so our security goal will be that the adversary
learns nothing more in the real world.

Let’s formalize this security property. We’ll start by introducing the notion of a View of an
adversary, which is all the information that the adversary gets access to during the execu-
tion of the protocol (i.e., all the messages that the adversary receives and sends). To argue
security, we then construct a simulator. This is a probabilistic algorithm that takes as input
everything that the adversary sees in the ideal world, and outputs a simulated view that is
indistinguishable from the real view (i.e., everything that the adversary sees during a real
protocol execution).1 What this means is that anything the adversary can learn in the real
world could just as well have been simulated given just the ideal leakage.

Let’s formalize this. Let C be the set of corrupt parties. We say a protocol securely computes
f if there exists a simulator Sim such that for all inputs x1, . . . , xn, we have

Sim(C, {xi : i ∈ C}︸ ︷︷ ︸
the inputs of cor-
rupted parties

, y = f (x1, . . . , xn)︸ ︷︷ ︸
the output of the computation

) ≈ {Viewi : i ∈ C}︸ ︷︷ ︸
the views of all corrupted par-
ties in a real protocol execution

.

There are two main security models people consider for MPC:

1. Semi-honest security. In this model, the adversary is assumed to follow the protocol
specification, but it attempts to learn anything it can about the honest parties’ inputs
from the protocol transcript.

2. Malicious security. In this model, the adversary may arbitrarily deviate from the protocol
specification at any time, to learn as much as possible about the honest parties’ inputs
or to fool them into accepting an incorrect output.

When building MPC protocols, it is often easier to first design a protocol that is secure
against semi-honest adversaries, and then add additional checks and balances to prevent
malicious deviations from the protocol. Semi-honest protocols are typically quite simple

1A simulator is just an (efficient) algorithm that we define for our security proof. This is not an actual
algorithm that we use in practice.

3



conceptually, and fairly efficient! We’ll focus on these for now, and discuss some techniques
to achieve malicious security at the end of the lecture.

3 Computing on Secret Shared Data

The main paradigm for MPC is to have the parties secret-share their inputs among each other
and to then compute the function f on top of secret-shared data. At the end of the compu-
tation, the parties can reconstruct the output.

So what’s secret-sharing? It’s just a simple way to “split” a secret into multiple chunks so
that all chunks are needed to reconstruct the secret:2

Additive Secret Sharing

To share a secret s ∈ Fp (a field of prime order p) among n parties, sample random
values r1, . . . , rn−1 ← Fp and set rn = s − ∑n−1

i=1 ri. We use [s] to denote the additive
secret share of s:

[s] = (r1, . . . , rn) such that s =
n

∑
i=1

ri .

Setup. We assume that each party’s input is a value xi ∈ Fp, and that the function f is
represented as an arithmetic circuit over Fp:

Definition 1 (Arithmetic Circuit). An arithmetic circuit C : Fm → F over a field F is
a circuit consisting of binary gates applying the operations ×,+ over F. (a standard
Boolean circuit is a special case where F = Z2, and the gates correspond to AND and
XOR operations).

Any function f can be represented as an arithmetic circuit with moderate overhead.

To begin, the parties simply secret-share their inputs x1, . . . , xn among each other.

Alice(xA)

[xA] = (rAA, rAB, rAC)

Bob(xB)

[xB] = (rBA, rBB, rBC)

Charlie(xC)

[xC] = (rCA, rCB, rCC)

rAC

rAB
rBA rBC

rCA

rCB

2There are also more general threshold secret-sharing schemes where t-ouf-of-n shares are sufficient to re-
construct the secret, and any collection of t− 1 shares reveals nothing [Sha79]. But we won’t need those here.

4



The protocol. Our MPC protocol is based on a simple observation:

To get a semi-honest protocol for computing f , all we need is the ability to securely
compute additions and multiplications over secret-shared data!

The protocol then operates in rounds as follows:

1. Each party secret shares their input with every other party.

2. For each addition gate in the circuit, with inputs [x], [y], the parties run a sub-protocol
to compute shares of [x + y].

3. For each multiplication gate in the circuit, with inputs [x], [y], the parties run a sub-
protocol to compute shares of [x · y].

4. At the end of the protocol, each party has a secret share of the output which they reveal
to all other parties.

For example, suppose three parties want to compute the function f (xA, xB, xC) = (xA +
xB) · xC. We write this down as an arithmetic circuit and run the protocol gate by gate.

+
×

[xA + xB][xA]

[xB]

[xC]

[(xA + xB) · xC]

Throughout the protocol, the values on the wires of the circuit are additively secret-shared:

Party A’s shares rAA rAB rAC r′A r′′A
Party B’s shares rBA rBB rBC r′B r′′B
Party C’s shares rCA rCB rCC r′C r′′C
Secret wire value xA xB xC xA + xB (xA + xB) · xC

Adding secret-shared numbers. Addition gates are easy! Given shares of x and y, we
simply have [x + y] = [x] + [y] where addition of shares is done component-wise. Let’s
unpack this:

If [x] = (x1, x2, . . . , xn) where x =
n

∑
i=1

xi

[y] = (y1, y2, . . . , yn) where y =
n

∑
i=1

yi

Then [x + y] = (x1 + y1, x2 + y2, . . . , xn + yn) satisfies x + y =
n

∑
i=1

(xi + yi) .

So processing an addition gate is easy: each party simply adds their shares of the inputs lo-
cally. This sub-protocol involves no communication between parties and provides information-
theoretic security (any subset of n− 1 corrupt parties learns nothing about the gate’s inputs
or output).

Other operations that are easy to compute locally are addition and multiplication by a con-

5



stant k:

[kx] = [kx1, kx2, . . . , kxn] = k[x] .
[x + k] = [x1 + k/n, x2 + k/n, . . . , xn + k/n] = [x] + k/n .

Multiplying secret-shared numbers. The trick above does not work for multiplication
gates.

[x · y] ̸= [x] · [y] = [x1 · y1, x2 · y2, . . . , xn · yn] that is, x · y ̸=
n

∑
i=1

xi · yi .

In fact, there is no way to compute [x · y] locally, without some form of interaction between
the parties. This is where the bulk of the work in MPC protocols goes into.

There are two main approaches to computing [x · y]:

1. The information-theoretic way: If we use Shamir’s secret sharing scheme [Sha79] rather
than an additive secret sharing scheme, then we can actually compute [x · y] using a
specialized protocol that provides information-theoretic, semi-honest security as long
as less than n/2 of the parties are corrupt (it turns out that this is the best you can do
without cryptographic assumptions).

This gives us purely information-theoretic MPC, which is quite surprising and remark-
able [BOGW88, CCD88]! If you’re interested, you can see these lecture notes.

2. The computational way: What if we want to support n/2 or more corrupt parties? (e.g.,
what if n = 2? Or what if we use MPC for elections? Would you want to be part of the
minority party?).

Luckily, we can use public-key cryptography to obtain computationally secure MPC
against an adversary who corrupts up to n− 1 parties [GMW87].

This is the approach we’ll take in this lecture. The main tools for multiplying shares are
oblivious transfer, garbled circuits or (somewhat) homomorphic encryption. We won’t cover
how these work here, but we might talk about some of them in the homeworks.

Beaver’s randomization trick. So multiplication gates are expensive: each one of them
requires a sub-protocol that involves communication between the parties and expensive
public-key cryptography.

A neat trick, first introduced by Beaver [Bea92], is to split the MPC into two phases: a pre-
processing phase and an online phase. The pre-processing phase will be expensive, but it is
independent of the parties’ inputs and of the function f . In contrast, the online phase will
be very fast, involving no public-key cryptography at all.

The trick consists in reducing the problem of multiplying specific secret-shared values [x]
and [y] to the problem of multiplying random secret-shared values.

Suppose the parties already have secret shares of a random product:

[a], [b], [c]︸ ︷︷ ︸
each party gets one
share of a, b and c

where a, b←$ F and c = a · b .

Then we can compute [x · y] as follows:

6

https://crypto.stanford.edu/cs355/19sp/lec7.pdf


1. Each party locally computes shares of [δ] = [x − a] and [ε] = [y − b]. This is just
addition, we know how to do this!

2. The parties reveal their shares to each other, so that each party learns δ = x − a and
ε = y − b. These are one-time pad encryptions of x and y under the keys a and b
respectively. Since a and b are secret-shared themselves, no party learns anything about
x or y.

3. Each party locally computes the following share:

zi =
1
n

δ · ε + bi · δ + ai · ε + ci.

The output [z] = (z1, . . . , zn) is now secret-shared among the parties.

Why is this correct? Let’s do the math:

n

∑
i=1

zi =

(
n

∑
i=1

1
n

δ · ε
)

+

(
n

∑
i=1

bi

)
· δ +

(
n

∑
i=1

ai

)
· ε +

(
n

∑
i=1

ci

)
= δ · ε + b · δ + a · ε + c

= (x− a) · (y− b) + b · (x− a) + a · (y− b) + c

= xy ���−ay ���−bx �
��+ab + ��bx ���−ab + ��ay ���−ab + ��ab

= xy

Essentially, what we’re doing is: (1) blind x and y with the random values a and b so that we
can reveal these values to all parties; (2) all parties compute δ · ε = (x− a) · (y− b) locally,
which contains the product xy we care about; (3) cancel out a bunch of cross-terms by locally
adding shares of a, b and c.

It isn’t hard to show that this protocol is information-theoretically secure, if the random
triplet [a], [b], [c] is used only once (this is the same security argument as for one-time pad
encryption).

Generating Beaver triples. So we’ve seen that if the parties already have shares of a ran-
dom “multiplication triple” [a], [b], [c] then they can compute [x · y] very efficiently, without
any public-key cryptography.

The bulk of the work is then to generate these triples in the first place. For this, we only need
to know an upper bound on the number of multiplication gates in the function f we’ll want
to compute.

So in a pre-processing phase, the parties will use some heavy public-key machinery to gen-
erate many such random triples. Then, in the online phase they use one of these triples for
every multiplication gate in the circuit.

4 Are We Done?

We’ve seen a very simple protocol for computing any function f without revealing anything
else than the output to a (semi-honest) adversary who corrupts up to n− 1 parties. Unfor-
tunately, for practical applications we typically need malicious security, and that’s where
things get tricky and expensive.

7



Malicious security There are numerous ways in which an adversary could deviate from
the protocol specification:

• They could reveal incorrect output shares to bias the final result.

• More generally, they can use incorrect share values at any gate.

• They could drop specific messages.

• They could wait until all honest parties reveal their output shares, and then abort the
protocol.

• etc.

The “ideal” execution of the protocol (with a trusted third party) actually captures many se-
curity properties beyond privacy, some of which can be tricky to formalize. These properties
are trivially satisfied if the attacker follows the protocol specification, but can be violated by
attackers who deviate from the protocol as above.

1. Privacy: the adversary learns nothing else than the output y.

2. Correctness: if an honest party outputs y, then y = f (x1, . . . , xn). In particular, all honest
parties output the same value y.

3. Input independence: the adversary cannot choose their inputs as a function of the honest
parties’ inputs.

4. Fairness: if the adversary learns the output y, then all honest parties also learn y.

Properties (1)-(3) can be achieved by malicious-security MPC protocols, for any adversary
that corrupts up to n − 1 parties. The first generation of MPC protocols achieved this by
having all parties prove, in zero-knowledge (see next lecture), that they followed the pro-
tocol specification. Modern MPC protocols use a much more efficient approach where se-
cret shares are authenticated using a MAC (message authentication code) scheme (see the
homework!). Property (4) is much harder to achieve, and requires an honest majority of
parties.

Efficiency. Generic MPC protocols are not used very often, as it is usually possible to de-
sign more efficient protocols tailored to a specific function f . This is especially true for
cryptographic functions based on number theoretic constructions (e.g., RSA, elliptic curve
cryptography, etc.)

There are also more efficient protocols for the special case of two-party computation, which
we won’t cover in this course.

Beyond confidentiality. The ideal notion of “privacy” that MPC aims at is that the adver-
sary learns nothing about the honest parties’ inputs except for the output of the function. As
we will see in the second half of this course, there are many situations where this notion of
privacy is actually too weak: the output of the function itself may reveal a lot of information
about the honest parties’ inputs. In such cases, we will need to depart from cryptography
and rely on stronger statistical notions of privacy.

8



References

[Bea92] Donald Beaver. Efficient multiparty protocols using circuit randomization. In
Advances in Cryptology—CRYPTO’91: Proceedings 11, pages 420–432. Springer,
1992.

[BOGW88] Michael Ben-Or, Shafi Goldwasser, and Avi Wigderson. Completeness theorems
for non-cryptographic fault-tolerant distributed computation. In Proceedings of
the Twentieth Annual ACM Symposium on Theory of Computing, STOC ’88, pages
1—-10. Association for Computing Machinery (ACM), 1988.

[CCD88] David Chaum, Claude Crépeau, and Ivan Damgard. Multiparty uncondition-
ally secure protocols. In Proceedings of the Twentieth Annual ACM Symposium on
Theory of Computing, STOC ’88, pages 11–19. Association for Computing Machin-
ery (ACM), 1988.

[GMW87] Oded Goldreich, Silvio Micali, and Avi Wigderson. How to play ANY men-
tal game. In Proceedings of the Nineteenth Annual ACM Symposium on Theory of
Computing, STOC ’87, pages 218––229. Association for Computing Machinery
(ACM), 1987.

[Sha79] Adi Shamir. How to share a secret. Communications of the ACM, 22(11):612–613,
1979.

9


	Recap on Commitments
	Secure Multi-Party Computation
	Defining MPC

	Computing on Secret Shared Data
	Are We Done?

