
Privacy Enhancing Technologies
Lecture 13 – Membership Inference Attacks Against

Machine Learning Models

Florian Tramèr

AGENDA

1. Recap

2. Deep neural networks

3. Membership inference attacks against neural networks

4. Auditing Private Learning

5. Open problem: white-box membership inference

1 Recap on Membership Inference Attacks

In the last lecture we introduced membership inference attacks, where an adversary tries to
infer whether a given data point x was used as input to a mechanism M. We showed that
(worst-case) membership inference attacks enjoy a tight connection to differential privacy,
and can be used to prove lower bounds for DP mechanisms (e.g., the number of counting
queries that can be answered with the Gaussian mechanism).

We now turn to membership inference attacks against machine learning models, an area
that has seen a lot of study in the past decade. The goal here is for an attacker to infer
whether a given data point x was part of the training data of some machine learning model
f θ. In contrast to the prior lecture, the settings we’ll consider will typically not be “fully”
worst-case. That is, we will aim to measure the privacy leakage of a model trained on some
“natural” dataset D (e.g., CIFAR-10 or ImageNet).

2 Deep Neural Networks

A deep neural network f θ : X → [0, 1]C is a learned function that maps some input data
sample x ∈ X to an C-class probability distribution; we let f θ(x)y denote the probability of
class y.

A (standard feedforward) neural network is a composition of linear transformations and
nonlinearities, with the outputs of the last layer passed through a softmax function σ to obtain
a probability distribution. That is:

f (x) = σ
(

fk ◦ · · · ◦ f1(x)︸ ︷︷ ︸
zθ(x)

)
, (1)

1

where each fi consists of a learned linear transformation followed by a fixed nonlinearity,
and zθ : X → RC returns the final logits followed by the softmax:

σ(z) =
[

ez1

∑i ezi
, . . . ,

ezC

∑i ezi

]
. (2)

Neural networks are trained via gradient descent to minimize some loss function ℓ:

θt+1 ← θt − η ∑
(x,y)∈B

∇θℓ(θt, x, y) (3)

Here, B is a batch of random training examples from the training set D, and η is the learning
rate, a small constant. For classification tasks, the most common loss function is the cross-
entropy loss:

ℓ(θ, x, y) = − log(f θ(x)y) . (4)

Overfitting. Since we train machine learning models to minimize the loss function over the
training data too well, and have much lower loss on the training data than on the general
population (i.e., the empirical risk L̂D(θ) is much lower than the population risk L(θ)). This
is typically referred to as overfitting.

Figure 1: Deep neural networks tend to overfit to the training data. The training loss (in
blue) typically decreases faster than the test loss (in orange).

Overfitting relates to privacy in that it reveals whether the trained model has memorized
some features of the training data that do not generalize to the general population. But
some presence of overfitting does not necessarily imply that individual data points are at
risk of being leaked. All it tells us is that the model has memorized some aspects of the
training data on average.

3 Membership Inference Attacks Against Neural Networks

Suppose we play the membership inference game where the mechanism M trains and re-
turns a neural network model f θ on some training data D. What strategies could the ad-
versary use to infer whether the model was trained on D1 or D0 (i.e., whether x was in the
training data or not)?

2

One option could be to look at the learned parameters θ and see if they somehow encode
some information about x. We’ll get back to this idea later (it’s in fact surprisingly hard to do
this). Instead, we could just look at the model’s output on x—in particular, the model’s loss
ℓ(θ, x, y). This is called as black-box attack because we only need query access to the trained
model.

The intuition behind using the model’s loss as a membership indicator is that we expect the
loss to be lower for data points in the training data, on average, due to overfitting:

/RVV��ORJLW�VFDOH�

)U
HT
XH
QF
\

PHPEHUV
QRQ�PHPEHUV

loss

fr
eq

ue
nc

y

Figure 2: Histogram of the loss of a neural network trained on CIFAR-10, for samples from
the training set (in red) and from the test set (in blue).

3.1 A Simple Attack: Global Loss Thresholding

The earliest membership inference attacks against machine learning models were directly in-
spired by the (average-case) overfitting phenomenon shown above [SSSS17, YGFJ18]. Since
L̂D(θ) < L(θ), we can set some threshold τ on the loss ℓ and declare any point x to be a
member if its loss is below the threshold:

Aglobal(θ, x, y) =

{
1 if ℓ(θ, x, y) ≤ τ

0 otherwise

However, it turns out that this is not a very good attack. For example, if we look at the
histogram of losses above in Figure 2, we can see that there is no threshold that would let us
confidently infer that any sample is a member.1

But this is when we consider the attack’s performance on average across all samples. What
we’d rather want is an attack tailored to each individual sample that we want to attack. But
here, a global threshold won’t do the trick.

3.2 The Need for Difficulty Calibration

The reason that a global thresholds on the loss gives a poor attack is that not all samples are
equally hard to learn. This is illustrated in Figure 3 below. We train a large number of models
on random subsets of CIFAR-10, and measure the loss of each model on four different points.
For each of the four images, we then plot the loss values for models that were trained on that
image (in red) and models that were not trained on that image (in blue).

1Note that we can however confidently infer that the sample is not a member if its loss is high enough.

3

0

100

200
easy to fit / inlier

member non-member

easy to fit / outlier

10−5 100
0

100

200
hard to fit / inlier

10−5 100

hard to fit / outlier

bird dog

airplane truck

Figure 3: Not all samples are equally hard (figure copied from [CCN+22]). For four samples
from CIFAR-10, we plot a histogram of a model’s loss on that sample when it was in the
training set (in red) and when it was not (in blue). Only outliers are easy to infer membership
for. The losses of different samples can also be on very different scales, depending on how
hard they are to learn.

These images were chosen to showcase some extreme behaviors:

• The bird on the top left is a prototypical “inlier” (i.e., a point that is typical of the train-
ing data; there are many similar birds in the CIFAR-10 dataset). For such points, the
model generalizes well, and so the loss is essentially the same whether the model was
trained on this specific image or not.

• However, some inliers are still “harder” to learn than others. The airplane on the bot-
tom left is also an inlier (i.e., it’s presence in the training data has little influence on the
model’s loss), but it belongs to a category of images that are harder to learn than the
top-left bird.

• The dog on the top right is an outlier (i.e., other dogs in the dataset are typically not as
dark). Models that are not trained on this image tend to misclassify it and get very high
loss. But when a model is trained on this image, it usually memorizes its label and gets
low loss.

• The truck on the bottom right is also an outlier, but this one is harder for the model to
memorize; even if the model was trained on the truck, its loss is still rather high.

From the figure, it’s clear that a single global threshold τ will not work well in distinguishing
members from non-members for all data points.

3.3 A Stronger Attack: Per-Sample Likelihood Ratios

A better attack strategy would be to set a different threshold on the loss ℓ for each data point
x. But still, this would be somehow crude because there is no way for the attack to express
its uncertainty over whether a point is a member or not. For example, if you set a threshold
of τ for the loss ℓ of some point x, and you observe a loss of 1.01τ, you should intuitively be
more uncertain about whether x is a member or not than if you observed a loss of 100τ.

This leads us to the optimal way of formulating the membership inference attack as a likeli-

4

hood ratio test. Define the null hypothesis H0 that x is not a member of the training data, and
the alternative hypothesis H1 that it is a member. Further let View = M(Db) be the output of
the mechanism that the adversary gets to see. The likelihood ratio test then compares the
ratio of the likelihoods of the null and alternative hypotheses, given the observed data

Λ(View) =
Pr[View | H0]

Pr[View | H1]
, (5)

and rejects the null hypothesis if Λ(View) ≥ τ for some threshold τ.

The Neyman-Pearson lemma tells us that this likelihood ratio test is the most powerful test
for distinguishing between the null and alternative hypotheses, at any given false positive
rate [NP33]!

Now it remains to actually compute the likelihoods Pr[View | H0] and Pr[View | H1]. We
don’t know of any way to do this in closed form, since the probability here is taken over
the entire process of training a deep neural network. Instead, we could aim to estimate the
likelihoods empirically. We describe here the approach of [CCN+22], but there are others
with slightly different assumptions (e.g., [YMM+22]).

First, let’s again consider that we are in a black-box setting where the adversary just observes
the loss for some target x and some label y, i.e., View = ℓ(θ, x, y). So we now want to
estimate

Pr[ℓ(θ, x, y) | Hb] (6)

To do this, [CCN+22] suggest to train multiple “IN” and “OUT” models that mimic the
membership inference game. That is, the attacker samples some training data Datk from the
distribution P and then trains a model fθIN on Datk ∪ {x} and a model fθOUT on Datk. After
repeating this process N times (for the same target x), we get 2N loss samples:

LossIN =
{
ℓ(θIN, x, y)

∣∣∣ Datk ∼ P
θIN ← M(Datk ∪ {x})

}
LossOUT =

{
ℓ(θOUT, x, y)

∣∣∣ Datk ∼ P
θOUT ← M(Datk)

}

These loss values are what we previously showed in Figure 3. The final step in the attack
from [CCN+22] is to fit a Gaussian distribution to both of these sets of loss samples, so
that we can estimate the probability in eq. (6) even when it is very small (and thus esti-
mate the attack’s TPR for very small FPR). Then, given these distributions N (µIN, σ2

IN) and
N (µOUT, σ2

OUT), the final likelihood ratio test is given by

Λ(ℓ) =
Pr[ℓ | H0]

Pr[ℓ | H1]
=
N (µIN, σ2

IN)(ℓ)

N (µOUT, σ2
OUT)(ℓ)

(7)

The performance of this attack on CIFAR-10 is shown in Figure 4. Here, we show the attack’s
TPR at a fixed FPR of 0.1%, for each of the 50’000 samples in CIFAR-10. We can see that a
small number of samples are incredibly vulnerable to membership inference, with the attack
reaching a TPR of almost 100% for some samples. The majority of samples, however, are
very hard to infer membership for. The attack achieves at best a few percent of TPR for most
samples.

5

Figure 4: Performance of the Likelihood Ratio Attack (LiRA) of [CCN+22] (figure copied
from [AZT24]). For each of the 50’000 samples in CIFAR-10, we plot the attack’s TPR at a
fixed FPR of 0.1% (sorted by TPR).

This is illustrative of how privacy is a worst-case notion: while most of the data samples
might be safe, a successful privacy enhancing technology should protect all data samples
from attack, even samples that are highly unusual (maybe those are the ones that are most
important to protect...).

Training a model with differential privacy (e.g., with DP-SGD) would indeed prevent mem-
bership inference attacks for all data points, if the privacy budget ε is set appropriately.

4 Auditing Private Learning with Membership Inference

Recall Corollary 1 from the last lecture, which we restate here for convenience:

Corollary 1. A mechanism M is (ε, δ)-DP if and only if for all adversaries in the mem-
bership inference game,

eε ≥ max
(

TNR− δ

FNR
,

TPR− δ

FPR

)

One way we can use this result is to select parameters (ε, δ) so that we get formal guaran-
tees on the performance of any membership inference attack. For example, if we want to
ensure that no attack can reach a TPR of 99% at a FPR below 1%, we should set ε ≤ ln 99 ≈
4.59.

But we can also apply this result in the other direction: given some empirical evaluation of
a membership inference attack, we can use it to lower-bound the privacy parameters (ε, δ)
that a mechanism satisfies. There are many applications of this in the literature, which we
discuss below.

4.1 Debugging DP-SGD Implementations

As with any security mechanism, private training algorithms such as DP-SGD might not
actually provide the formal guarantees given by the privacy analysis. This could be due to
bugs in the implementation, or due to flaws in the privacy analysis itself. That is, even if we
have a purported proof that our DP-SGD algorithm satisfies, say (1, 10−8)-DP, it is possible

6

that the actual privacy loss is much higher in practice.

Membership inference attacks are a way to empirically evaluate the privacy of a mechanism.
If a mechanism claims ε privacy, and yet we can build a membership inference attack that
achieves TPR/FPR ≥ eε, then we have evidence that there is a bug somewhere.

As an example, in [TTS+22] we looked at a proposed variant of DP-SGD that claimed very
strong privacy guarantees. We then ran this mechanism M many times on two datasets D
and D ∪ {x}, and estimated the TPR and FPR of the LiRA attack of [CCN+22]. While the
mechanism claimed ε ≈ 0.2 privacy, we found that the actual privacy budget was at least
ε′ > 2.7. This was due to a bug in the implementation of the mechanism, which caused the
added noise to be divided by the batch size m.

4.2 Understanding the Tightness of the DP-SGD Analysis

Recall the privacy analysis of the DP-SGD algorithm which we sketched in lecture 11. This
analysis is known to be tight in a somewhat contrived worst-case setting, where the follow-
ing conditions are met:

1. All examples in D have gradients that are zero (i.e, gi = 0⃗) while the target sample x
has a (clipped) gradient of the form g(x) = [C, 0, . . . , 0]. (with slightly more generality,
we can also make the weaker assumption that all samples have gradients orthogonal to
the gradient of x).

2. The attacker gets to observe all intermediate learning steps θ0, . . . , θT.

It is an open question whether these conditions are necessary for the DP-SGD analysis to be
tight. The latter assumption, in particular, is quite unrealistic: in practice, the attacker would
typically only get to see the final trained model θT, and not any intermediate steps.

Once we relax these assumptions, our best membership inference attacks yield lower-bounds
on the privacy parameter ε that don’t match the upper-bounds given by the DP-SGD analy-
sis [JUO20, NST+21]. And so this begs the question: are our attacks not strong enough, or is
the DP-SGD analysis too conservative in these settings?

This is an active area of research. It is known that in convex settings, releasing only the final
model θT can provide better privacy guarantees than releasing all intermediate steps [FMTT18].
But it remains unclear whether a similar result holds for non-convex settings, such as train-
ing deep neural networks.

4.3 Empirical Evaluation of Heuristic Privacy Defenses

Since the DP-SGD analysis might be overly pessimistic, some researchers have also pro-
posed heuristic privacy defenses for training deep neural networks. These defenses do not
have any formal privacy guarantees, and so the only way to evaluate them is via empirical
membership inference attacks.

This can be tricky though. In recent work, we showed that a number of heuristic de-
fenses against membership inference attacks are in fact not effective when evaluated prop-
erly [AZT24].

7

5 Open Problem: White-box Membership Inference

The attacks we have discussed so far are all black-box attacks, since the adversary only relies
on observing the model’s output on some target point x, and not any of the actual learned
parameters θ.

Intuitively, we would expect a white-box attack to be much stronger, since the adversary
has access to a lot more information about the learned model. Some works leveraged this
additional information to build attacks that beat the naive global loss thresholding attack
from Section 3.1 [NSH19].

Yet, we now know that these attacks were not particularly strong to begin with, and that
per-sample likelihood ratio attacks from Section 3.3 are in fact a lot stronger. It is an open
question whether white-box access to the model’s parameters could help us build a stronger
likelihood ratio test. The idea here would be to estimate the probabilities

Pr[θ | Hb] (8)

but we don’t know how to do this for multiple reasons. First, the parameters θ are high-
dimensional, and so empirical estimation might require training millions of models. And
even if we did that, the problem is that every time we train a new model, the ordering of the
parameters might completely change (neural networks contain a number of symmetries, e.g.,
permuting all weights in one layer and applying the inverse permutation to the next layer
yields an equivalent model). And so even if we had millions of samples of the parameters θ,
for models trained both with and without the target sample x, it is not obvious how to use
these to estimate the likelihoods in eq. (8).

If you have any ideas about how to approach this problem, please let me know! This
is a fascinating open research problem, and thus a great place to end this course. As
mentioned in the first lecture, this might be your first and last class on privacy enhancing
technologies, so now’s the time to go out there and apply what you learned! I hope you
enjoyed the ride and got a flavor of the amazing results and open research questions in
this area.

References

[AZT24] Michael Aerni, Jie Zhang, and Florian Tramèr. Evaluations of machine learn-
ing privacy defenses are misleading. In Proceedings of the 2024 ACM SIGSAC
Conference on Computer and Communications Security, 2024.

[CCN+22] Nicholas Carlini, Steve Chien, Milad Nasr, Shuang Song, Andreas Terzis, and
Florian Tramèr. Membership inference attacks from first principles. In 2022
IEEE Symposium on Security and Privacy (SP), pages 1897–1914. IEEE, 2022.

[FMTT18] Vitaly Feldman, Ilya Mironov, Kunal Talwar, and Abhradeep Thakurta. Privacy
amplification by iteration. In 2018 IEEE 59th Annual Symposium on Foundations
of Computer Science (FOCS), pages 521–532. IEEE, 2018.

[JUO20] Matthew Jagielski, Jonathan Ullman, and Alina Oprea. Auditing differentially
private machine learning: How private is private SGD? Advances in Neural In-
formation Processing Systems, 33:22205–22216, 2020.

[NP33] Jerzy Neyman and Egon Sharpe Pearson. IX. on the problem of the most efficient
tests of statistical hypotheses. Philosophical Transactions of the Royal Society of

8

London. Series A, Containing Papers of a Mathematical or Physical Character, 231(694-
706):289–337, 1933.

[NSH19] Milad Nasr, Reza Shokri, and Amir Houmansadr. Comprehensive privacy anal-
ysis of deep learning: Passive and active white-box inference attacks against
centralized and federated learning. In 2019 IEEE symposium on security and pri-
vacy (SP), pages 739–753. IEEE, 2019.

[NST+21] Milad Nasr, Shuang Songi, Abhradeep Thakurta, Nicolas Papernot, and
Nicholas Carlin. Adversary instantiation: Lower bounds for differentially pri-
vate machine learning. In 2021 IEEE Symposium on security and privacy (SP),
pages 866–882. IEEE, 2021.

[SSSS17] Reza Shokri, Marco Stronati, Congzheng Song, and Vitaly Shmatikov. Member-
ship inference attacks against machine learning models. In 2017 IEEE symposium
on security and privacy (SP), pages 3–18. IEEE, 2017.

[TTS+22] Florian Tramer, Andreas Terzis, Thomas Steinke, Shuang Song, Matthew Jagiel-
ski, and Nicholas Carlini. Debugging differential privacy: A case study for pri-
vacy auditing. arXiv preprint arXiv:2202.12219, 2022.

[YGFJ18] Samuel Yeom, Irene Giacomelli, Matt Fredrikson, and Somesh Jha. Privacy risk
in machine learning: Analyzing the connection to overfitting. In 2018 IEEE 31st
computer security foundations symposium (CSF), pages 268–282. IEEE, 2018.

[YMM+22] Jiayuan Ye, Aadyaa Maddi, Sasi Kumar Murakonda, Vincent Bindschaedler, and
Reza Shokri. Enhanced membership inference attacks against machine learning
models. In Proceedings of the 2022 ACM SIGSAC Conference on Computer and Com-
munications Security, pages 3093–3106, 2022.

9

	Recap on Membership Inference Attacks
	Deep Neural Networks
	Membership Inference Attacks Against Neural Networks
	A Simple Attack: Global Loss Thresholding
	The Need for Difficulty Calibration
	A Stronger Attack: Per-Sample Likelihood Ratios

	Auditing Private Learning with Membership Inference
	Debugging DP-SGD Implementations
	Understanding the Tightness of the DP-SGD Analysis
	Empirical Evaluation of Heuristic Privacy Defenses

	Open Problem: White-box Membership Inference

