Privacy Enhancing Technologies Background Sheet

Florian Tramèr

1 Complexity

1.1 Asymptotic Notation

1.1.1 Big O Notation

Big O notation is used to describe the upper bound of the growth rate of a function.

Definition 1. For functions $f, g : \mathbb{N} \to \mathbb{R}^+$, we say f(n) = O(g(n)) if $\exists c > 0, n_0 \in \mathbb{N}$ such that $\forall n \ge n_0$: $f(n) \le c \cdot g(n)$

1.1.2 Little o Notation

Little o notation provides a strict upper bound, stronger than Big O.

Definition 2. For functions $f, g : \mathbb{N} \to \mathbb{R}^+$, we say f(n) = o(g(n)) if $\forall c > 0, \exists n_0 \in \mathbb{N}$ such that $\forall n \ge n_0$:

 $f(n) < c \cdot g(n)$

1.1.3 Omega Notation

Omega notation describes the lower bound of the growth rate of a function.

Definition 3. For functions $f, g : \mathbb{N} \to \mathbb{R}^+$, we say $f(n) = \Omega(g(n))$ if $\exists c > 0, n_0 \in \mathbb{N}$ such that $\forall n \ge n_0$:

$$f(n) \ge c \cdot g(n)$$

1.2 P vs NP

1.2.1 Definitions

Let Σ be a finite alphabet and $L \subseteq \Sigma^*$ be a language.

Definition 4 (P). P is the class of languages decidable in polynomial time by a deterministic Turing machine. Formally:

$$\mathsf{P} = \bigcup_{k \in \mathbb{N}} \mathrm{TIME}(n^k)$$

where TIME(t(n)) is the class of languages decidable by a deterministic Turing machine in O(t(n)) time.

Definition 5 (NP). NP is the class of languages verifiable in polynomial time by a deterministic Turing machine. Formally, $L \in NP$ if \exists polynomial p and polynomial-time decidable relation $R \subseteq \Sigma^* \times \Sigma^*$ such that:

$$x \in L \iff \exists y \in \Sigma^*, |y| \le p(|x|) : R(x,y)$$

Here, *y* is called a witness or certificate.

1.2.2 Relationship

It is clear that $P \subseteq NP$, as any language decidable in polynomial time is also verifiable in polynomial time. The central question in complexity theory is whether P = NP or $P \neq NP$.

2 Basic Cryptographic Primitives

We say a function f(n) is negligible if $f(n) = o(n^{-c})$ for all constants $c \in \mathbb{N}$.

2.1 Pseudorandom Number Generator (PRNG)

A function $G : \{0,1\}^s \to \{0,1\}^n$ where n > s is a secure PRNG if for any probabilistic polynomial-time distinguisher *D*:

$$|\Pr[D(G(\mathcal{U}_s)) = 1] - \Pr[D(\mathcal{U}_n) = 1]| \le \operatorname{negl}(s)$$

where \mathcal{U}_k denotes the uniform distribution over $\{0, 1\}^k$.

2.2 Pseudorandom Generator (PRG)

A PRG takes a short random seed $s \in \{0,1\}^{\lambda}$ and expands it into a long "random looking" string $G(s) \in \{0,1\}^{\ell}$ where $\ell > \lambda$.

A PRG $G : \{0,1\}^{\lambda} \to \{0,1\}^{\ell}$ where $\ell > \lambda$ is a deterministic poly-time algorithm. It is secure if for all poly-time algorithms \mathcal{A} :

$$|\Pr[s \leftarrow \$\{0,1\}^{\lambda} : \mathcal{A}(G(s)) = 1] - |\Pr[t \leftarrow \$\{0,1\}^{\ell} : \mathcal{A}(t) = 1]| \le \operatorname{negl}(\lambda)$$

2.3 Cryptographic Hash Function

A Cryptographic Hash Function is a function $H : \{0,1\}^* \rightarrow \{0,1\}^n$ with the following properties:

- Collision resistance: It's computationally infeasible to find $x \neq y$ such that H(x) = H(y).
- Preimage resistance: Given y, it's computationally infeasible to find x such that H(x) = y.

2.4 Symmetric Encryption with Semantic Security

For a symmetric encryption scheme (Gen, Enc, Dec), semantic security means that an adversary cannot distinguish between encryptions of two different messages (this is also called *indistinguishability under chosen plaintext attacks*, or IND-CPA).

We can formalize this as follows. For every probabilistic polynomial time algorithm A and two arbitrary messages m_0, m_1 , we have:

$$\Pr[\mathcal{A}(\texttt{Enc}_k(m_b)) = b \; : \; k \leftarrow \texttt{Gen}()] \leq \frac{1}{2} + \mathsf{negl}(n)(n)$$

3 Number Theory

3.1 Groups

A group (\mathbb{G}, \cdot) is a set \mathbb{G} with a binary operation " \cdot " satisfying:

- Closure: $\forall a, b \in \mathbb{G}, a \cdot b \in \mathbb{G}$
- Associativity: $\forall a, b, c \in \mathbb{G}, (a \cdot b) \cdot c = a \cdot (b \cdot c)$
- Identity: $\exists e \in \mathbb{G}$ such that $\forall a \in \mathbb{G}, e \cdot a = a \cdot e = a$
- Inverse: $\forall a \in \mathbb{G}, \exists a^{-1} \in \mathbb{G}$ such that $a \cdot a^{-1} = a^{-1} \cdot a = e$

3.2 Generator and Order

For a finite group G, an element $g \in G$ is a generator if $\{g^k : k \in \mathbb{Z}\} = G$. The order of G is |G|, the number of elements in G.

3.3 Hardness Assumptions in Groups

The following problems are believed to be hard in some groups that are widely used in cryptography. In each case, let g be a randomly chosen generator of a group G of order q.

Discrete Logarithm: Given an element $h \in \mathbb{G}$, it is hard to find $x \in \mathbb{Z}_q$ such that $g^x = h$.

Computational Diffie-Hellman (CDH): Given $g^a, g^b \in \mathbb{G}$ for random $a, b \in \mathbb{Z}_q$, it is hard to compute g^{ab}

Decisional Diffie-Hellman (DDH): It is hard to distinguish between the distributions (g^a, g^b, g^{ab}) and (g^a, g^b, g^c) for random $a, b, c \in \mathbb{Z}_q$.

3.4 Finite Fields

A finite field is a finite set \mathbb{F} with two operations "+" and ".", such that:

- Addition and multiplication are both associative and commutative.
- There exists an additive identity 0 and multiplicative identity 1.
- Every element has an additive inverse.
- Every non-zero element has a multiplicative inverse.
- Multiplication distributes over addition.

The integers \mathbb{Z}_p modulo a prime *p* form a finite field.

4 Probability and Statistics

4.1 Expectation and Variance

For a discrete random variable *X*:

- Expectation: $\mathbb{E}[X] = \sum_{x} x \cdot \Pr[X = x]$
- Variance: $\operatorname{Var}[X] = \mathbb{E}[(X \mathbb{E}[X])^2] = \mathbb{E}[X^2] (\mathbb{E}[X])^2$

4.2 **Probability Inequalities**

- Union Bound: $\Pr[\bigcup_i A_i] \leq \sum_i \Pr[A_i]$
- Markov's Inequality: For non-negative *X* and a > 0, $\Pr[X \ge a] \le \frac{\mathbb{E}[X]}{a}$
- Chebyshev's Inequality: For any random variable *X* with mean μ and variance σ^2 , and k > 0, $\Pr[|X \mu| \ge k\sigma] \le \frac{1}{k^2}$
- Chernoff / Hoeffding Bound: Let X_1, \ldots, X_n be independent random variables taking values in [a, b]. Let $X = \sum_i X_i$ and $\mu = \mathbb{E}[X]$. Then:

$$\Pr[|X - \mu| \ge t] \le 2 \exp\left(-\frac{2t^2}{n(b-a)^2}\right)$$

4.3 Standard Probability Distributions

- Bernoulli: Ber(p): Pr[X = 1] = p, Pr[X = 0] = 1 p, $\mathbb{E}[X] = p$, Var[X] = p(1 p)
- Binomial: Bin(n, p): $Pr[X = k] = \binom{n}{k}p^k(1-p)^{n-k}$, $\mathbb{E}[X] = np$, Var[X] = np(1-p)
- Gaussian $\mathcal{N}(\mu, \sigma^2)$: $f(x) = \frac{1}{\sigma\sqrt{2\pi}} e^{-\frac{(x-\mu)^2}{2\sigma^2}}$, $\mathbb{E}[X] = \mu$, $\mathbf{Var}[X] = \sigma^2$