
Privacy Enhancing Technologies
Background Sheet

Florian Tramèr

1 Complexity

1.1 Asymptotic Notation

1.1.1 Big O Notation

Big O notation is used to describe the upper bound of the growth rate of a function.

Definition 1. For functions f , g : N → R+, we say f (n) = O(g(n)) if ∃c > 0, n0 ∈ N

such that ∀n ≥ n0:
f (n) ≤ c · g(n)

1.1.2 Little o Notation

Little o notation provides a strict upper bound, stronger than Big O.

Definition 2. For functions f , g : N → R+, we say f (n) = o(g(n)) if ∀c > 0, ∃n0 ∈ N

such that ∀n ≥ n0:
f (n) < c · g(n)

1.1.3 Omega Notation

Omega notation describes the lower bound of the growth rate of a function.

Definition 3. For functions f , g : N → R+, we say f (n) = Ω(g(n)) if ∃c > 0, n0 ∈ N

such that ∀n ≥ n0:
f (n) ≥ c · g(n)

1.2 P vs NP

1.2.1 Definitions

Let Σ be a finite alphabet and L ⊆ Σ∗ be a language.

1



Definition 4 (P). P is the class of languages decidable in polynomial time by a deter-
ministic Turing machine. Formally:

P =
⋃

k∈N

TIME(nk)

where TIME(t(n)) is the class of languages decidable by a deterministic Turing ma-
chine in O(t(n)) time.

Definition 5 (NP). NP is the class of languages verifiable in polynomial time by a de-
terministic Turing machine. Formally, L ∈ NP if ∃ polynomial p and polynomial-time
decidable relation R ⊆ Σ∗ × Σ∗ such that:

x ∈ L ⇐⇒ ∃y ∈ Σ∗, |y| ≤ p(|x|) : R(x, y)

Here, y is called a witness or certificate.

1.2.2 Relationship

It is clear that P ⊆ NP, as any language decidable in polynomial time is also verifiable in
polynomial time. The central question in complexity theory is whether P = NP or P ̸=
NP.

2 Basic Cryptographic Primitives

We say a function f (n) is negligible if f (n) = o(n−c) for all constants c ∈N.

2.1 Pseudorandom Number Generator (PRNG)

A function G : {0, 1}s → {0, 1}n where n > s is a secure PRNG if for any probabilistic
polynomial-time distinguisher D:

|Pr[D(G(Us)) = 1]− Pr[D(Un) = 1]| ≤ negl(s)

where Uk denotes the uniform distribution over {0, 1}k.

2.2 Pseudorandom Generator (PRG)

A PRG takes a short random seed s ∈ {0, 1}λ and expands it into a long “random looking’
string G(s) ∈ {0, 1}ℓ where ℓ > λ.

A PRG G : {0, 1}λ → {0, 1}ℓ where ℓ > λ is a deterministic poly-time algorithm. It is secure
if for all poly-time algorithms A:

|Pr[s←$ {0, 1}λ : A(G(s)) = 1]− |Pr[t←$ {0, 1}ℓ : A(t) = 1]| ≤ negl(λ)

2



2.3 Cryptographic Hash Function

A Cryptographic Hash Function is a function H : {0, 1}∗ → {0, 1}n with the following
properties:

• Collision resistance: It’s computationally infeasible to find x ̸= y such that H(x) =
H(y).

• Preimage resistance: Given y, it’s computationally infeasible to find x such that H(x) =
y.

2.4 Symmetric Encryption with Semantic Security

For a symmetric encryption scheme (Gen, Enc, Dec), semantic security means that an adver-
sary cannot distinguish between encryptions of two different messages (this is also called
indistinguishability under chosen plaintext attacks, or IND-CPA).

We can formalize this as follows. For every probabilistic polynomial time algorithm A and
two arbitrary messages m0, m1, we have:

Pr[A(Enck(mb)) = b : k← Gen()] ≤ 1
2
+ negl(n)(n)

3 Number Theory

3.1 Groups

A group (G, ·) is a set G with a binary operation “·” satisfying:

• Closure: ∀a, b ∈ G, a · b ∈ G

• Associativity: ∀a, b, c ∈ G, (a · b) · c = a · (b · c)

• Identity: ∃e ∈ G such that ∀a ∈ G, e · a = a · e = a

• Inverse: ∀a ∈ G, ∃a−1 ∈ G such that a · a−1 = a−1 · a = e

3.2 Generator and Order

For a finite group G, an element g ∈ G is a generator if {gk : k ∈ Z} = G. The order of G is
|G|, the number of elements in G.

3.3 Hardness Assumptions in Groups

The following problems are believed to be hard in some groups that are widely used in
cryptography. In each case, let g be a randomly chosen generator of a group G of order
q.

Discrete Logarithm: Given an element h ∈ G, it is hard to find x ∈ Zq such that gx =
h.

Computational Diffie-Hellman (CDH): Given ga, gb ∈ G for random a, b ∈ Zq, it is hard
to compute gab

3



Decisional Diffie-Hellman (DDH): It is hard to distinguish between the distributions
(ga, gb, gab) and (ga, gb, gc) for random a, b, c ∈ Zq.

3.4 Finite Fields

A finite field is a finite set F with two operations “+” and “·”, such that:

• Addition and multiplication are both associative and commutative.

• There exists an additive identity 0 and multiplicative identity 1.

• Every element has an additive inverse.

• Every non-zero element has a multiplicative inverse.

• Multiplication distributes over addition.

The integers Zp modulo a prime p form a finite field.

4 Probability and Statistics

4.1 Expectation and Variance

For a discrete random variable X:

• Expectation: E[X] = ∑x x · Pr[X = x]

• Variance: Var[X] = E[(X−E[X])2] = E[X2]− (E[X])2

4.2 Probability Inequalities

• Union Bound: Pr[
⋃

i Ai] ≤ ∑i Pr[Ai]

• Markov’s Inequality: For non-negative X and a > 0, Pr[X ≥ a] ≤ E[X]
a

• Chebyshev’s Inequality: For any random variable X with mean µ and variance σ2, and
k > 0, Pr[|X− µ| ≥ kσ] ≤ 1

k2

• Chernoff / Hoeffding Bound: Let X1, . . . , Xn be independent random variables taking
values in [a, b]. Let X = ∑i Xi and µ = E[X]. Then:

Pr[|X− µ| ≥ t] ≤ 2 exp
(
− 2t2

n(b− a)2

)
.

4.3 Standard Probability Distributions

• Bernoulli: Ber(p): Pr[X = 1] = p, Pr[X = 0] = 1− p, E[X] = p, Var[X] = p(1− p)

• Binomial: Bin(n, p): Pr[X = k] = (n
k)pk(1− p)n−k, E[X] = np, Var[X] = np(1− p)

• Gaussian N (µ, σ2): f (x) = 1
σ
√

2π
e−

(x−µ)2

2σ2 , E[X] = µ, Var[X] = σ2

4


	Complexity
	Asymptotic Notation
	Big O Notation
	Little o Notation
	Omega Notation

	P vs NP
	Definitions
	Relationship


	Basic Cryptographic Primitives
	Pseudorandom Number Generator (PRNG)
	Pseudorandom Generator (PRG)
	Cryptographic Hash Function
	Symmetric Encryption with Semantic Security

	Number Theory
	Groups
	Generator and Order
	Hardness Assumptions in Groups
	Finite Fields

	Probability and Statistics
	Expectation and Variance
	Probability Inequalities
	Standard Probability Distributions


