
Privacy Enhancing Technologies Fall 2024

Problem Set 2 – 22/10/2024 update

Due: Fri, Nov 08 at 11:59pm CET (submit via Gradescope)

Instructions: You must typeset your solution in LaTeX using the provided template:

https://spylab.ai/teaching/pets-f24/template.tex

Submission Instructions: You must submit your problem set via Gradescope. Please use the course code provided
in Moodle to sign up. Note that Gradescope requires that the solution to each problem starts on a new page.

Bugs: We make mistakes! If it looks like there might be a mistake in the statement of a problem, please ask a
clarifying question on Moodle.

Problem 1: Conceptual Questions [8 points]. For each of the following statements, say whether it is TRUE or
FALSE. Justify your answer in one sentence.

(a) In a world where P=NP,

i. the PLONK Poly-IOP is sound. [1 point]

ii. secure single-server PIR schemes exist. [1 point]

iii. secure two-server PIR schemes exist. [1 point]

iv. all languages in NP have a SNARG. [1 point]

(b) Any pair of points (x1, y1), (x2, y2) ∈Z2
6, where x1 ̸= x2 defines a polynomial of degree at most 1 over Z6. (Note:

“6” is not a prime.) [2 points]

(c) In a secure ORAM for a memory of n words, for every read operation, the RAM must perform O(n) operations
to avoid leaking information about the memory access. [2 points]

Problem 2: Polynomial Commitments [12 points]. To complete the PLONK SNARG we saw in the lecture,
we still need a secure polynomial commitment scheme! The one you will build here is essentially a ZeroTest
performed “in the exponent” of a group.

Let G be a group of prime order p and g ∈G be a group generator. Our scheme’s setup produces the following
public parameters:

{g , gα, gα2
, . . . , gαd

} ,

where d < p is a bound on the degree of the polynomial we can commit to, and α ∈Z∗
p is a random element that is

unknown to the prover and verifier.

(a) To commit to a polynomial f ∈ F[X ]≤d , the prover sends c = g f (α) to the verifier. Show how the prover can
compute this value. [1 point]

(b) Is this commitment statistically or computationally binding? Justify your answer. [1 point]

(c) To open the commitment at some point f (z) = y , we will use a ZeroTest! Describe the quotient polynomial
q(X ). [1 point]

(d) Assume the existence of an efficient algorithm VerifProd(g a , g b , g c ) → {0,1} that outputs 1 if and only if
c = a ·b for a,b,c ∈Z∗

p . Describe a verification algorithm that checks that f (z) = y , given g f (α) and g q(α) (with
negligible soundness error). [3 points]
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(e) Show that if the prover can compute the value g
x

α−z given any g x , then they can break evaluation binding at
point z. [2 points]

(f) Show that if the prover can break evaluation binding at point z, then they can compute g
1

α−z .
Use the life advice from lecture 1. [2 points]

(g) When we use this scheme as part of a SNARG, we typically have many parties that will use the same public
parameters (e.g., to prove correctness of transactions in a blockchain). How should we run the setup of this
scheme in such a setting? [2 points]

Problem 3: A Simple Single-Server PIR Protocol [12 points]. In this problem, we will describe (a simplified
version of) a recent, very concretely efficient single-server PIR protocol.

This protocol is based on the “Learning With Errors” (LWE) problem, which gives rise to a very simple
encryption scheme due to Oded Regev.

Definition 1 (Secret-Key Regev Encryption). Let q > 2 be a prime, and n ∈N (with q ≈ n2). Let m ∈N be the
size of the plaintext vectors. The secret key is a randomly sampled vector s⃗ ←$ Zn

q . The Regev encryption of a

bit vector b⃗ ∈ {0,1}m is:
(A, c⃗) =

(
A, A⃗s + e⃗ + b⃗ · ⌈q/2⌉

)
∈Zm×n

q ×Zm
q ,

where A ←$ Zm×n
q is a random matrix, and e⃗ ←$ U [−E ,E ]m is a random vector of “errors” sampled iid from a

uniform distribution between −E and E , where E < ⌈q/4⌉.a

To decrypt (A, c⃗), we compute z⃗ = |⃗c − A⃗s (mod q)| and round all values of z⃗ smaller than ⌈q/4⌉ to 0 and all
values equal or larger than ⌈q/4⌉ to 1.b

aThe actual error distribution is typically more complicated, but this simplified version suffices for our purposes.
bWe view Zq as the set {−⌊q/2⌋, . . . ,−1,0,1, . . . ,⌈q/2⌉}. If b⃗i = 0, then z⃗i ∈ [−E ,E ] and so |⃗zi | ≤ E < ⌈q/4⌉. If b⃗i = 1, then z⃗i ∈[⌈q/2⌉−E ,⌈q/2⌉+E

]
and so |⃗zi | ≥ ⌈q/4⌉.

(a) Show that the Regev scheme is linearly homomorphic. How many additions does it allow, if we want
decryption to succeed with 100% probability? [3 points]

(b) Let D ∈ {0,1}N be the PIR database. Describe a single-server PIR scheme where the client and server exchange
2
p

N · (n +1) elements of Zq , and the server performs O(N n) multiplications in Zq .

You can assume that the client has a secret key for the Regev encryption scheme with parameters n,m =p
N .

[3 points]

(c) Let’s improve this scheme by using preprocessing. Note that in Regev’s scheme, the matrix A is not secret, and
can be reused for many different encryptions. Since it is just a random matrix, we can also generate it using a
PRG from a small seed, i.e., A ← PRG(k), where k ∈ {0,1}λ is a seed shared between the client and server.

Describe a PIR protocol with preprocessing with the following properties:

• There is a one-time preprocessing step (independent of the client’s query) where the server performs

O(N n) multiplications in Zq , and sends a hint matrix H ∈Z
p

N×n
q to the client.

• In the online phase, to access one element of the database, the client sends
p

N elements of Zq to the
server, the server performs O(N ) multiplications in Zq , and the client downloads

p
N elements of Zq .

[3 points]

(d) Now for a final optimization: in your scheme above, the client has to store a large hint matrix H of size
p

N ×n.
Describe a PIR protocol with preprocessing where the client only stores a hint of size O(n2) elements of Zq



(so independent of the database size!) and the communication complexity in the online phase is still O(
p

N )
elements ofZq per query. Hint: apply PIR recursively, and notice that the client doesn’t need the full matrix
A for decryption. [3 points]

Problem 4: Maliciously secure ORAM [4 points]. For this problem, you can assume we use the
p

n ORAM from
the lecture, although the problem applies to any ORAM. Suppose the data in physical RAM is encrypted with a
semantically secure encryption scheme with key k, where k is stored in the ORAM client.

The problem is that this ORAM provides no integrity protection: the adversary (i.e., the RAM server) can
respond to a Read query with any value it wants.

(a) As a partial solution, suppose we add a MAC to the data.1 That is, when the ORAM client wants to write value
data to address a, it first computes m = MAC(k, (a,data)) and asks the server to store (data,m) at address
a. When the client reads from address a, it asks the server to return the pair (data,m) and then checks that
m = MAC(k, (a,data)). If not, the client aborts. Show that this scheme is insecure: there exist programs
where the server can respond to a Read query with an incorrect value that the client will accept. [2 points]

(b) Propose a protocol that is maliciously secure, in that the client never accepts an incorrect value from the RAM.
You can assume that when performing a Read(a) or Write(a,data) operation, the ORAM client can easily
check how many previous reads and writes it has done for address a during the execution of the program.

[2 points]

Problem 5: Feedback [0 points]. Please answer the following questions to help us design future problem sets.
You are not required to answer these questions, and if you would prefer to answer anonymously, please use this
form. However, we do encourage you to provide us feedback on how to improve the course experience.

(a) Roughly how long did you spend on this problem set?

(b) What was your favorite problem on this problem set?

(c) What was your least favorite problem on this problem set?

(d) Any other feedback for this problem set?

1A MAC is a keyed function m ← MAC(k,data) such that it is hard for an adversary to compute a correct MAC value for a given message
without knowing the key k (they are thus essentially a symmetric-key variant of digital signatures).
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